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 Means to an End — Getting the Job Don
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 Failing software projects have plagued soft
ent ever since its existence. Numerous diff
 for this plague have been introduced, wher
d is product centred and focuses on cust
n. Whereas none of the methods, tools 
 are a Silver Bullet, many are important aids
 software project. However, there is an impo
cerning all software engineering tools, met
iques: when a means is promoted to becom
revent this from happening common sense
re the key. 
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I. INTRODUCTION 

 most lively trend in current software engine
s to be the paradigm of “getting the job do

books like The Pragmatic Programmer” [1
d Fallacies of Software Engineering” [2]
loggers like Joel Spolsky [3] or Jeff Atwoo
he practical aspects of surviving software pro
nt software processes, such as the ones prom
ile movement, refocused on customer satisfac
 being more process oriented like the “o
What makes those books hard to put down
ike Spolsky and Atwood so popular? Is th
ral idea behind this trend? Maybe there is. 
start with a question: “Who is paying the sal
f us who are working on a software product?
ss. Not the company we work for. It's that 
that Spolsky, Atwood and the Agile folks
out. Just like the sun is the source of all energ
th, the customers are the main money source 
uce software. So they'd better be happy, els
 out of business really fast. Sometimes we sl
rget this, although deep down, we all know t
at meets his needs is what makes a cust

t remember that this is what makes him pa
. In fact, to put it very bluntly, this is 
engineering” was invented in the first p

development was—and unfortunately in m
 is—chaotic: projects being late, over budge
n functionality. 
ld of software engineering has flourished in
des. It started in the 1960s, and was m
 by the software crisis of the 60's, 70's and 
ny software projects had bad endings. S
g processes were introduced and a whole 
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field of research emerged. Most notably, in 1984 the 
Software Engineering Institute (SEI) was established, which 
has been the origin of many ground breaking initiatives in 
software engineering. Besides methodology, we have seen 
major advances in programming languages too. For example 
the movement from sequential languages such as C and 
Pascal to object oriented languages such as C++ or Java. 
According to Fred Brooks himself: “I think object-oriented 
programming in fact lifts design thinking to a higher level 
and thus addresses the essence of the problem” [7]. In 
addition, we have also seen incredible improvements in tool 
support for the process of software development and 
software development itself. Among others, tools for 
version control, automated building, automated testing and 
the like have become indispensable in the modern software 
developer's tool-belt.  
 All these improvements in software engineering 
unfortunately have a downside too: the worst thing that can 
happen is that a means is being promoted to an end. I will 
try to explain this with examples considering four different 
topics: processes, tools, testing and coding. Then I will 
shortly discuss ways to avoid this pitfall and the presence of 
the same problem in software engineering research. I will 
conclude with an analogy between running a restaurant and 
running a software project. 
 

II. MEANS BECOMING AN END 
 Let me start with the example where a software 
engineering process as a means is promoted to an end. I 
have been in a project where the process was considered to 
be almost holy. Almost all work was in the service of the 
process: a crude violation of the first value of the Agile 
Manifesto [8]—“individuals and interactions over processes 
and tools”—commonly leading to a slipping project. Instead 
of working on the product to deliver, valuable time was 
wasted in writing and updating documents that were never 
read, setting up complex procedures that were not used, and 
all other kinds of tasks purely in service of the process. 
 Not only process, but tools may become holy as well. In 
the past, I have had to “fix” perfectly functioning and 
beautifully written code, to keep QA tools from choking. To 
keep the tools working it took me vast amounts of time after 
each commit. Besides that, I remember cases where I had to 
make the code less readable and harder to understand, 
which is exactly the opposite of what you would want to 
achieve with QA tools. I would not have complained in case 
these tools were vital to the project, but they were almost 
never used at all—which is not uncommon: “Tools are the 
toys of the software developer. They love to learn about 
new tools, try them out, even procure them. And then 
something funny happens. The tools seldom get used” [2]. 
Besides processes and tools, there is another artefact in 
software engineering that can be declared sacred, namely 
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the test set. And this time, I agree; I do not want to 
invalidate test driven development and get in a fight with 
the XP guys. However, there still is a pitfall here too. It is in 
the test benchmarks. Namely, it is the quality of the 
benchmark that makes or breaks a test case. It is definitely 
not trivial to explain why a test case fails after a source code 
change, but it is one thing to declare the benchmark to be 
holy. The danger in writing code just for the sake of making 
the test set run successfully, is in the quality of the test set. 
Therefore, it is very important to remember that the test set 
should be at the service of the software project and not the 
other way around. 

Last but certainly not least: coding for the sake of coding. 
A common problem among software developers. As Jeff 
Atwood puts it so eloquently: “Software developers think 
their job is writing code. But it's not. Their job is to solve 
the customer's problem. Sure, our preferred medium for 
solving problems is software, and that does involve writing 
code. But let's keep this squarely in context: writing code is 
something you have to do to deliver a solution. It is not an 
end in and of itself” [9]. 

III. STAY ALERT AT ALL TIMES 
So what is the key point here? Atwood already stated that 
“writing code is not an end itself” [9], however, I think this 
is even more general and applies to all other areas of 
software engineering too. All too often, I have seen that 
means being turned into ends. 
 What can you do about it? Most importantly, you should 
always remain aware of what you are doing and remember 
why you are doing it, regardless of whether you are writing 
code, designing, testing, writing specifications or whatever 
it is that you are doing for a software project. This might 
sound vague and yes, this is nothing different from common 
sense, but unfortunately, I've seen many cases where just 
that tiny little bit of common sense would have avoided 
gigantic missteps in a software project or organization. To 
overcome these missteps alertness is the key. Whenever you 
feel awkward about something you need to do in order to 
obey to a process or a tool, take a step back and find out 
why you actually need to do that in the first place: try to 
answer the question what the end is for the means. 
 I have encountered two approaches that relate to the 
problem I'm describing and more or less give a way to raise 
your alertness in this regard. The first is from “The Toyota 
Way” [6]. Despite the fact that car production is a very a 
different context, I believe the principles from the Toyota 
Way can be loosely mapped onto software development too. 
It is principle 14 that applies in the situation I'm describing: 
“Become a learning organization through relentless 
reflection (hansei) and continuous improvement (kaizen). 
This involves criticizing every aspect of what you do.” To 
this end, to determine the root cause of a problem, among 
others the method of the “5 Whys” is introduced in the 
Toyota production system [5]. But you can also use that 
same method to find out whether some task you are working 
on is helping to get the job done or not. It should be clear, 
after asking yourself “Why?” five times, whether the task is 
beneficial for the customer or not. As a result, the task may 
turn out to be not so beneficial, or worse, it might as well be 
detrimental for the success of the project. In this case, you 
should surely reconsider it. 

 Jeff Atwood writes about another approach to find out 
whether somebody is coding for the sake of coding, called 
the elevator test: “As software developers, we spend so 
much time mired in endless, fractal levels of detail that it's 
all too easy for us to fall into the trap of coding for the sake 
of coding. [...] every person on your team should be able to 
pass the elevator test with a stranger—to clearly explain 
what they're working on, and why anyone would care, 
within 60 seconds” [9]. 

IV. SOFTWARE NIGHTMARES 
I would like conclude by introducing an analogy between 
running a restaurant and a software project. The last couple 
of weeks I've been watching the show called “Ramsay's 
Kitchen Nightmares”, where Gordon Ramsay helps failing 
restaurants to get back on the map. You either love him or 
hate him, but I must admit that I'm a big a fan. 
 In each episode of Kitchen Nightmares, Ramsay takes 
kind of the same approach. He enters a restaurant and starts 
with an investigation to see what's wrong. As you would 
expect, the first thing he does is ordering a few dishes from 
the menu to check out the quality of the food—and thus the 
chef. After that he will inspect the kitchen and he checks out 
the staff. He then tries to turn those things around that seem 
to be the bottlenecks for the restaurant to be successful—in 
his own style: unabashed to tell the truth, wearing his heart 
on his sleeve, and using the f-word multiple times in almost 
every sentence. However, if you listen carefully, you will 
notice that in between all the swearing, he actually knows 
what he is doing and that he is genuinely committed to help 
improve an establishment. His power lies in three things: 1) 
He is an outsider, he can take a step back and investigate 
things from a distance. 2) He wears his heart on his sleeve 
and he has the courage to tell the truth even if it might hurt 
somebody. 3) He keeps things simple—this way he can 
achieve higher quality and customers will be happier. On 
top of that, he employs his strengths to achieve but one 
crystal clear goal: getting clientèle and give them the best 
possible evening that will make them return or bring in 
more guests. 
 Back to the software world, where we have our own 
“Software Nightmares.” Unfortunately software 
development isn't sexy enough for television, however, I 
believe a passionate person like Gordon Ramsay, with that 
kind of drive, could be successful in the software world too. 
I know nobody will watch “Software Nightmares” for fun, 
but I do hope we have enough of our own Gordon Ramsay's 
in our field out there to turn around failing software 
projects. 
 

TO DERRICK 
Congratulations on your 60th birthday! I hope you'll 
remember we discussed the topic at the Espresso Workshop 
last year (2007), because, when Bruce and Stefan asked me 
to write something in honour of your birthday (which for me 
is a privilege to do so) I immediately recalled our talk about 
my presentation on the first day of the workshop. For this 
occasion, and with a hard deadline, I'm excited that I finally 
managed to put down my thoughts about our chat. For the 
future I wish you all the best, and I hope we will have many 
more such inspiring conversations. 
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