

A e

 Abstract.
developm
treatments
latest tren
satisfactio
techniques
successful
pitfall con
and techn
end. To p
alertness a

Index Ter
Developme

THE
seem

Inspiring
“Facts an
popular b
focus on t
Also, rece
by the Ag
instead of
methods.
bloggers l
more gene
 Let me
of those o
not our bo
customer
talking ab
planet ear
who prod
might run
seem to fo
product th
smile. Jus
our work
“software
software
cases still
deficient i
 The fie
past deca
stimulated
when ma
engineerin

 Gertjan
http://www.c
software des

 Means to an End — Getting the Job Don
gertjan

 Failing software projects have plagued soft
ent ever since its existence. Numerous diff
 for this plague have been introduced, wher
d is product centred and focuses on cust
n. Whereas none of the methods, tools
 are a Silver Bullet, many are important aids
 software project. However, there is an impo
cerning all software engineering tools, met
iques: when a means is promoted to becom
revent this from happening common sense
re the key.

ms. Programming, Software Engineering, Sof
nt Management

I. INTRODUCTION

 most lively trend in current software engine
s to be the paradigm of “getting the job do

books like The Pragmatic Programmer” [1
d Fallacies of Software Engineering” [2]
loggers like Joel Spolsky [3] or Jeff Atwoo
he practical aspects of surviving software pro
nt software processes, such as the ones prom
ile movement, refocused on customer satisfac
 being more process oriented like the “o
What makes those books hard to put down
ike Spolsky and Atwood so popular? Is th
ral idea behind this trend? Maybe there is.
start with a question: “Who is paying the sal
f us who are working on a software product?
ss. Not the company we work for. It's that
that Spolsky, Atwood and the Agile folks
out. Just like the sun is the source of all energ
th, the customers are the main money source
uce software. So they'd better be happy, els
 out of business really fast. Sometimes we sl
rget this, although deep down, we all know t
at meets his needs is what makes a cust

t remember that this is what makes him pa
. In fact, to put it very bluntly, this is
engineering” was invented in the first p

development was—and unfortunately in m
 is—chaotic: projects being late, over budge
n functionality.
ld of software engineering has flourished in
des. It started in the 1960s, and was m
 by the software crisis of the 60's, 70's and
ny software projects had bad endings. S
g processes were introduced and a whole

Zwartjes is an associate member of Espresso, auth
ode-muse.com, and currently employed at ASML as
igner. (e-mail: gertjan@code-muse.com).
Gertjan Zwartjes
.zwartjes@gmail.com
ware
erent
e the
omer

and
 to a
rtant
hods
e an
 and

tware

ering
ne.”
] or

 and
d [4]
jects.
oted
tion,
lder”
, and
ere a

aries
” It's
same
 are
y on
of us
e we
owly
hat a
omer
y for
why
lace;
any

t and

 the
uch

80's,
trict
new

or of
senior

field of research emerged. Most notably, in 1984 the
Software Engineering Institute (SEI) was established, which
has been the origin of many ground breaking initiatives in
software engineering. Besides methodology, we have seen
major advances in programming languages too. For example
the movement from sequential languages such as C and
Pascal to object oriented languages such as C++ or Java.
According to Fred Brooks himself: “I think object-oriented
programming in fact lifts design thinking to a higher level
and thus addresses the essence of the problem” [7]. In
addition, we have also seen incredible improvements in tool
support for the process of software development and
software development itself. Among others, tools for
version control, automated building, automated testing and
the like have become indispensable in the modern software
developer's tool-belt.
 All these improvements in software engineering
unfortunately have a downside too: the worst thing that can
happen is that a means is being promoted to an end. I will
try to explain this with examples considering four different
topics: processes, tools, testing and coding. Then I will
shortly discuss ways to avoid this pitfall and the presence of
the same problem in software engineering research. I will
conclude with an analogy between running a restaurant and
running a software project.

II. MEANS BECOMING AN END
 Let me start with the example where a software
engineering process as a means is promoted to an end. I
have been in a project where the process was considered to
be almost holy. Almost all work was in the service of the
process: a crude violation of the first value of the Agile
Manifesto [8]—“individuals and interactions over processes
and tools”—commonly leading to a slipping project. Instead
of working on the product to deliver, valuable time was
wasted in writing and updating documents that were never
read, setting up complex procedures that were not used, and
all other kinds of tasks purely in service of the process.
 Not only process, but tools may become holy as well. In
the past, I have had to “fix” perfectly functioning and
beautifully written code, to keep QA tools from choking. To
keep the tools working it took me vast amounts of time after
each commit. Besides that, I remember cases where I had to
make the code less readable and harder to understand,
which is exactly the opposite of what you would want to
achieve with QA tools. I would not have complained in case
these tools were vital to the project, but they were almost
never used at all—which is not uncommon: “Tools are the
toys of the software developer. They love to learn about
new tools, try them out, even procure them. And then
something funny happens. The tools seldom get used” [2].
Besides processes and tools, there is another artefact in
software engineering that can be declared sacred, namely

http://www.code-muse.com/

the test set. And this time, I agree; I do not want to
invalidate test driven development and get in a fight with
the XP guys. However, there still is a pitfall here too. It is in
the test benchmarks. Namely, it is the quality of the
benchmark that makes or breaks a test case. It is definitely
not trivial to explain why a test case fails after a source code
change, but it is one thing to declare the benchmark to be
holy. The danger in writing code just for the sake of making
the test set run successfully, is in the quality of the test set.
Therefore, it is very important to remember that the test set
should be at the service of the software project and not the
other way around.

Last but certainly not least: coding for the sake of coding.
A common problem among software developers. As Jeff
Atwood puts it so eloquently: “Software developers think
their job is writing code. But it's not. Their job is to solve
the customer's problem. Sure, our preferred medium for
solving problems is software, and that does involve writing
code. But let's keep this squarely in context: writing code is
something you have to do to deliver a solution. It is not an
end in and of itself” [9].

III. STAY ALERT AT ALL TIMES
So what is the key point here? Atwood already stated that
“writing code is not an end itself” [9], however, I think this
is even more general and applies to all other areas of
software engineering too. All too often, I have seen that
means being turned into ends.
 What can you do about it? Most importantly, you should
always remain aware of what you are doing and remember
why you are doing it, regardless of whether you are writing
code, designing, testing, writing specifications or whatever
it is that you are doing for a software project. This might
sound vague and yes, this is nothing different from common
sense, but unfortunately, I've seen many cases where just
that tiny little bit of common sense would have avoided
gigantic missteps in a software project or organization. To
overcome these missteps alertness is the key. Whenever you
feel awkward about something you need to do in order to
obey to a process or a tool, take a step back and find out
why you actually need to do that in the first place: try to
answer the question what the end is for the means.
 I have encountered two approaches that relate to the
problem I'm describing and more or less give a way to raise
your alertness in this regard. The first is from “The Toyota
Way” [6]. Despite the fact that car production is a very a
different context, I believe the principles from the Toyota
Way can be loosely mapped onto software development too.
It is principle 14 that applies in the situation I'm describing:
“Become a learning organization through relentless
reflection (hansei) and continuous improvement (kaizen).
This involves criticizing every aspect of what you do.” To
this end, to determine the root cause of a problem, among
others the method of the “5 Whys” is introduced in the
Toyota production system [5]. But you can also use that
same method to find out whether some task you are working
on is helping to get the job done or not. It should be clear,
after asking yourself “Why?” five times, whether the task is
beneficial for the customer or not. As a result, the task may
turn out to be not so beneficial, or worse, it might as well be
detrimental for the success of the project. In this case, you
should surely reconsider it.

 Jeff Atwood writes about another approach to find out
whether somebody is coding for the sake of coding, called
the elevator test: “As software developers, we spend so
much time mired in endless, fractal levels of detail that it's
all too easy for us to fall into the trap of coding for the sake
of coding. [...] every person on your team should be able to
pass the elevator test with a stranger—to clearly explain
what they're working on, and why anyone would care,
within 60 seconds” [9].

IV. SOFTWARE NIGHTMARES
I would like conclude by introducing an analogy between
running a restaurant and a software project. The last couple
of weeks I've been watching the show called “Ramsay's
Kitchen Nightmares”, where Gordon Ramsay helps failing
restaurants to get back on the map. You either love him or
hate him, but I must admit that I'm a big a fan.
 In each episode of Kitchen Nightmares, Ramsay takes
kind of the same approach. He enters a restaurant and starts
with an investigation to see what's wrong. As you would
expect, the first thing he does is ordering a few dishes from
the menu to check out the quality of the food—and thus the
chef. After that he will inspect the kitchen and he checks out
the staff. He then tries to turn those things around that seem
to be the bottlenecks for the restaurant to be successful—in
his own style: unabashed to tell the truth, wearing his heart
on his sleeve, and using the f-word multiple times in almost
every sentence. However, if you listen carefully, you will
notice that in between all the swearing, he actually knows
what he is doing and that he is genuinely committed to help
improve an establishment. His power lies in three things: 1)
He is an outsider, he can take a step back and investigate
things from a distance. 2) He wears his heart on his sleeve
and he has the courage to tell the truth even if it might hurt
somebody. 3) He keeps things simple—this way he can
achieve higher quality and customers will be happier. On
top of that, he employs his strengths to achieve but one
crystal clear goal: getting clientèle and give them the best
possible evening that will make them return or bring in
more guests.
 Back to the software world, where we have our own
“Software Nightmares.” Unfortunately software
development isn't sexy enough for television, however, I
believe a passionate person like Gordon Ramsay, with that
kind of drive, could be successful in the software world too.
I know nobody will watch “Software Nightmares” for fun,
but I do hope we have enough of our own Gordon Ramsay's
in our field out there to turn around failing software
projects.

TO DERRICK
Congratulations on your 60th birthday! I hope you'll
remember we discussed the topic at the Espresso Workshop
last year (2007), because, when Bruce and Stefan asked me
to write something in honour of your birthday (which for me
is a privilege to do so) I immediately recalled our talk about
my presentation on the first day of the workshop. For this
occasion, and with a hard deadline, I'm excited that I finally
managed to put down my thoughts about our chat. For the
future I wish you all the best, and I hope we will have many
more such inspiring conversations.

REFERENCES
[1] Andrew Hunt and David Thomas, The Pragmatic Programmer.

Addison Wesley, 1999.
[2] Robert L. Glass, Facts and Fallacies of Software Engineering.

Addison Wesley, 2003.
[3] Joel Spolsky. Joel on Software. [Online]. Available:

http://www.joelonsoftware.com.
[4] Jeff Atwood. Coding Horror. [Online]. Available:

http://www.codinghorror.com.
[5] Taiichi Ohno, Toyota production system: beyond large-scale

production. Productivity Press 1988.
[6] Jeffrey Liker,The Toyota Way: 14 Management Principles from the

World's Greatest Manufacturer. McGraw-Hill, 2004.
[7] Gertjan Zwartjes (2007, Aug. 13). Gurus Respond—Are We Artists?

[Online]. Available: http://www.code-muse.com/blog/?p=20.
[8] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,

Ward Cunningham, Martin Fowler, James Grenning, Jim
Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave
Thomas (2001). The Agile Manifesto. [Online]. Available:
http://www.agilemanifesto.org.

[9] Jeff Atwood (2007, Sep. 26). Can Your Team Pass The Elevator Test.
[Online]. Available: http://www.codinghorror.com/blog/archives/
000962.html.

http://www.joelonsoftware.com/
http://www.codinghorror.com/
http://www.code-muse.com/blog/?p=20
http://www.agilemanifesto.org/
http://www.codinghorror.com/blog/archives/
http://www.codinghorror.com/blog/archives/000962.html
http://www.codinghorror.com/blog/archives/000962.html

	INTRODUCTION
	Means Becoming an End
	Stay Alert at All Times
	Software Nightmares

