Supervised Learning Performance Issues

[Presented by Anna Rakitianskaia]

17 August 2015
Activation functions
Why are some better than others?

Bounded $f(\text{net})$
- How would you scale the inputs?
- How would you scale the outputs?
- Are some functions “better” than others?
- Which works best for you?
Yann LeCun’s activation function
Reference paper: “Efficient Backprop”

LeCun TanH
- Modified hyperbolic tangent
- \(f(\text{net}) = 1.7159 \tanh \left(\frac{2}{3} \text{net} \right) \)
- Softer slope
- Wider activation range

Engelbrecht’s adaptive activation function
Learn the function slope together with the weights

Lambda-Gamma Learning
- Learn the steepness and range of $f(net)$
- $f(net, \lambda, \gamma) = \frac{\gamma}{1 + e^{-\lambda net}}$
- λ determines the slope steepness
- γ determines the range
- Slope/range is learned \Rightarrow no need for scaling
- Is there a catch?
Engelbrecht’s adaptive activation function
Learn the function slope together with the weights

Lambda-Gamma Learning

- Update the training algorithm:
 - $o_k = f(net, \lambda_{o_k}, \gamma_{o_k})$
 - $\delta_{o_k} = -\frac{\lambda_{o_k}}{\gamma_{o_k}}(t_k - o_k) o_k (\gamma_{o_k} - o_k)$
 - $\lambda_{o_k} = \lambda_{o_k} + \eta_2 \delta_{o_k} \frac{net_{o_k}}{\lambda_{o_k}}$
 - $\gamma_{o_k} = \gamma_{o_k} + \eta_3 (t_k - o_k) \frac{1}{\gamma_{o_k}} o_k$
- Have to choose values for η_2 and η_3 in addition to η_1
Learning Rate and Momentum

- Backpropagation algorithm:
 - \(w(t) = w(t) + \Delta w(t) + \alpha \Delta w(t-1) \)
 - \(\Delta w(t) = \eta \left(- \frac{\delta E}{\delta w(t)} \right) \)

- \(\alpha \) - momentum; controls the influence of past weight changes on the current weight change

- \(\eta \) - learning rate; controls the magnitude of the step size

- How do we choose values for \(\eta \) and \(\alpha \)?
Effect of Learning Rate on Training

Learning Rate

- Backpropagation algorithm:
 \[w(t) = w(t) + \Delta w(t) + \alpha \Delta w(t - 1) \]
 \[\Delta w(t) = \eta \left(-\frac{\delta E}{\delta w(t)} \right) \]

- If \(\eta \) is small, step size will be small
 - Search path will closely resemble the gradient path
 - Learning will be slow

- If \(\eta \) is large, step size will be large
 - Might skip over good regions
 - Learning will be fast
Effect of Learning Rate on Training

Learning Rate

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one.
- Start with a small value (0.1), increase if convergence is slow, decrease if oscillation/stagnation is observed.

Plaut et al: $\eta \approx \frac{1}{\text{fanin}}$

Every weight w_i can have its own η_i.

If direction of change (i.e. sign of Δw_i) has not changed since previous weight change, increase η_i (go faster).

Else, decrease η_i (go slower).

Start with large η (go fast), decrease η over time (go slower as you approach the optimum).

Adaptive η - multiple variants proposed.
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one
- Start with a small value (0.1), increase if convergence is slow, decrease if oscillation/stagnation is observed
- Plaut et al: $\eta \approx \frac{1}{\text{fanin}}$
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one
- Start with a small value (0.1), increase if convergence is slow, decrease if oscillation/stagnation is observed
- Plaut et al: $\eta \approx \frac{1}{\text{fanin}}$
- Every w_i can have its own η_i
 - If direction of change (i.e. sign of Δw_i) has not changed since previous weight change, increase η_i (go faster)
 - Else, decrease η_i (go slower)
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one
- Start with a small value (0.1), increase if convergence is slow, decrease if oscillation/stagnation is observed
- Plaut et al: $\eta \approx \frac{1}{fanin}$
- Every w_i can have its own η_i
 - If direction of change (i.e. sign of Δw_i) has not changed since previous weight change, increase η_i (go faster)
 - Else, decrease η_i (go slower)
- Start with large η (go fast), decrease η over time (go slower as you approach the optimum)
Choosing the Learning Rate

Choosing η

- Cross-validation: try a selection of values, choose the best-performing one
- Start with a small value (0.1), increase if convergence is slow, decrease if oscillation/stagnation is observed
- Plaut et al: $\eta \approx \frac{1}{\text{fanin}}$
- Every w_i can have its own η_i
 - If direction of change (i.e. sign of Δw_i) has not changed since previous weight change, increase η_i (go faster)
 - Else, decrease η_i (go slower)
- Start with large η (go fast), decrease η over time (go slower as you approach the optimum)
- Adaptive η - multiple variants proposed
Effect of Momentum on Training

Momentum term

- Backpropagation algorithm:
 \[w(t) = w(t) + \Delta w(t) + \alpha \Delta w(t - 1) \]
 \[\Delta w(t) = \eta \left(-\frac{\delta E}{\delta \hat{w}(t)} \right) \]
- **Stochastic learning**: adjust weights after each pattern
- **Result**: sign of the error derivatives fluctuates, making the NN unlearn what it has learned in the previous steps
- **Solution**: Batch learning
- **Alternatively**: add momentum to the equation - average the weight changes on the fly, maintain direction
- Larger \(\alpha \) => direction of \(\Delta w(t) \) must be preserved for longer to affect the direction of weight changes
Choosing \(\alpha \)

- Use a static value of 0.9
Choosing the Momentum

Choosing α

- Use a static value of 0.9
- Cross-validation: try a selection of values, choose the best-performing one

Quickprop (Fahlman): $\alpha_i(t) = \frac{\delta E \delta w_i(t)}{\delta E \delta w_i(t) - \frac{1}{2} \delta E \delta w_i(t-1)}$

Follow a quadratic approximation of the previous gradient step and the current gradient.

Becker and LeCun calculated α as a function of second order derivatives:

$$\alpha = \frac{\delta^2 E \delta^2 w_i(t)}{2} - 1$$

Numerous adaptive α mechanisms proposed.
Choosing α

- Use a static value of 0.9
- Cross-validation: try a selection of values, choose the best-performing one
- Every w_i can have its own α_i
 - Quickprop (Fahlman):
 $$\alpha_i(t) = \frac{\delta E}{\delta w_i(t)} \left(\frac{\delta E}{\delta w_i(t-1)} - \frac{\delta E}{\delta w_i(t)} \right)$$
 - Follow a quadratic approximation of the previous gradient step and the current gradient
Choosing the Momentum

Choosing α

- Use a static value of 0.9
- Cross-validation: try a selection of values, choose the best-performing one
- Every w_i can have its own α_i
 - Quickprop (Fahlman):
 \[\alpha_i(t) = \frac{\delta E}{\delta w_i(t)} \left(\frac{\delta E}{\delta w_i(t-1)} - \frac{\delta E}{\delta w_i(t)} \right) \]
 - Follow a quadratic approximation of the previous gradient step and the current gradient
- Becker and LeCun calculated α as a function of second order derivatives:
 \[\alpha = \left(\frac{\delta^2 E}{\delta w_i^2(t)} \right)^{-1} \]
Choosing the Momentum

Choosing α

- Use a static value of 0.9
- Cross-validation: try a selection of values, choose the best-performing one
- Every w_i can have its own α_i
 - Quickprop (Fahlman):
 \[
 \alpha_i(t) = \frac{\frac{\delta E}{\delta w_i(t)}}{\frac{\delta E}{\delta w_i(t-1)} - \frac{\delta E}{\delta w_i(t)}}
 \]
 - Follow a quadratic approximation of the previous gradient step and the current gradient
- Becker and LeCun calculated α as a function of second order derivatives:
 \[
 \alpha = \left(\frac{\delta^2 E}{\delta w_i^2(t)} \right)^{-1}
 \]
- Numerous adaptive α mechanisms proposed
Training Algorithms

Gradient-based
- Use derivative information
- Error function/activation functions have to be differentiable
- Sensitive to starting point
- Gets stuck in local optima (saddle points)

Population-based (PSO, EA, Simulated Annealing, etc)
- No derivative information used - less informed
- Error function/activation functions can be discontinuous
- Less sensitive to starting point
- Exploses when not optimized: goes out into far ends of the search space and stagnates there
- Adaptive: PSO performed better than BP on dynamic NN problems
Architecture Selection
How many layers? How many neurons? How many weights?

- Occam’s razor: the simplest network is always the best
- Too few neurons: insufficient complexity, poor (underfit) model
- Too many neurons: excessive complexity, poor (overfit) model
- Layers: more can be better (only for complex problems), but is harder to train
- Weights: if the training algorithm is good, it should be capable of setting irrelevant weights to zero
Architecture Selection

What are the options?

- Exhaustive search: try them all
 - Infeasible: For W number of weights, the number of possible architectures is 2^W
 - Pick a few and do cross-validation
 - Randomly try architectures until a good one is discovered

- Regularisation
 - Add a penalty term to the objective function to minimize complexity
 - Requires a measure of complexity, changes the search space

- Construction (growing) - start with a small architecture, add neurons as necessary

- Pruning - start with an oversized architecture, remove unnecessary neurons
Penalizing complexity

- Add a penalty term to the objective function:
 - \[E = E_T + \lambda E_C \]
- Now we are minimizing both the error and the complexity
- How do you measure complexity?
Regularisation

Penalizing complexity

- Add a penalty term to the objective function:
 \[E = E_T + \lambda E_C \]
- Now we are minimizing both the error and the complexity
- How do you measure complexity?
- Weight decay:
 \[E_C = \sum_{i=1}^{W} w_i^2 \]
 - Minimize weight vector magnitude; only constantly reinforced weights will survive
Regularisation

Penalizing complexity

- Add a penalty term to the objective function:
 \[E = E_T + \lambda E_C \]
 - Now we are minimizing both the **error** and the **complexity**

- How do you measure complexity?
 - **Weight decay:**
 - \[E_C = \sum_{i=1}^{W} w_i^2 \]
 - Minimize weight vector magnitude; only constantly reinforced weights will survive

- **Weight elimination:**
 - \[E_C = \sum_{i=1}^{W} \frac{w_i^2}{1 + \frac{w_i^2}{w_0^2}} \]
 - \(w_0 \) determines the “significance” of weights
 - \(|w_i| >> w_0 \Rightarrow \) high complexity, penalize more
 - \(|w_i| << w_0 \Rightarrow \) low complexity, penalize less
Regularisation

Penalizing complexity

- Laplace: L1 regularisation
 - $E_C = \sum_{i=1}^{W} |w_i|$
 - Contribution of each w to the penalty term increases linearly with the increase of the weight

- Weight decay minimizes entropy \Rightarrow introduce an entropy penalty term (Kamimura and Nakanishi, 1993)

- Multiple other penalty functions were proposed
Regularisation

Penalizing complexity

- **Laplace: L1 regularisation**
 - $E_C = \sum_{i=1}^{W} |w_i|$
 - Contribution of each w to the penalty term increases linearly with the increase of the weight

- Weight decay minimizes entropy \Rightarrow introduce an entropy penalty term (Kamimura and Nakanishi, 1993)

- Multiple other penalty functions were proposed

- Consider the objective function:
 - $E = E_T + \lambda E_C$

- How do we choose λ?
 - Cross-validation
 - Make it adaptive (how?)
Neural Network Construction

Minimalistic approach

- Start with just a few neurons, add more when stagnation occurs
 - The NN contains a working model when a new neuron is added => integrating the new neuron may slow down training
 - How do we decide when to add a neuron, and when to stop growing?

Alternatively: optimise both the weights and the architecture using a genetic algorithm

Evolutionary algorithms were successfully used to "evolve" NN architectures

If you can represent it, you can evolve it

Probably the best "growing" approach

One problem: evolving NNs is a slow process
Neural Network Construction

Minimalistic approach

- Start with just a few neurons, add more when stagnation occurs
 - The NN contains a working model when a new neuron is added => integrating the new neuron may slow down training
 - How do we decide when to add a neuron, and when to stop growing?
- Alternatively: optimise both the weights and the architecture using a genetic algorithm
 - Evolutionary algorithms were successfully used to “evolve” NN architectures
 - If you can represent it, you can evolve it
 - Probably the best “growing” approach
 - One problem: evolving NNs is a slow process
Neural Network Construction
NEAT: NeuroEvolution of Augmenting Topologies
Neural Network Pruning

Applying Occam’s Razor

- Start with just an oversized architecture, remove unnecessary parameters
 - Weights
 - Hidden units
 - Input units
 - Need a way of quantifying relevance of each parameter
- Large architectures have large functional flexibility => a lot of potential for a good fit
- And a lot of potential for an over-fit?
 - Yes, if you do not prune enough
Intuitive pruning

- Determine the “active” neurons, remove inactive ones
 - “An important unit is the one that fires frequently and has strong connections to other units”
 - $G_i = \sum \sum (w_{ij}o_i)^2$ - Goodness factor
 - $E_i = \sum \sum (w_{ij}o_i o_i^{l+1})$ - Consuming energy
- Units that output 0 more often than 1 are considered irrelevant - is it fair?
- Weight magnitude pruning: remove small weights

Evolutionary pruning

- Make different architectures compete for survival
- Assign fitness points to smaller architectures
- Effective, but slow
Neural Network Pruning

Information Matrix pruning

- Fisher information: a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.

 $$ I = \frac{1}{P} \sum_{p=1}^{P} \frac{\delta f_{NN}}{\delta w} \left(\frac{\delta f_{NN}}{\delta w} \right)^T $$

 - information carried by a weight
 - May be time-consuming to compute
 - Makes assumptions: linear $f(net)$ in output units, error is normally distributed

- Singular value decomposition: analyse hidden unit covariance matrix

- Principal Component Analysis: prune parameters (weights) that do not account for data variance

- All of these techniques do not scale very well to large NNs
Neural Network Pruning

Hypothesis Testing

- Use statistical tests to calculate the significance of weights/hidden units
 - Null hypothesis: a subset of weights is equal to zero
 - If weights associated with a neuron are not statistically different from zero, prune the neuron
- Inject a noisy input
 - If the statistical significance of an original parameter is not higher than that of random noise, prune the parameter
- Weights are \approx normally distributed
 - Remove the weights that are in the distribution tails
Neural Network Pruning

Sensitivity analysis pruning

- Saliency: the influence small perturbations to a parameter have on the approximated error/output function
- Prune parameters with low saliency
- Optimal Brain Damage (OBD), introduced by Yann LeCun:
 1. Choose a reasonable NN architecture
 2. Train until a reasonable solution is obtained
 3. Compute second order derivatives h_{kk} for each parameter (diagonal of the Hessian matrix)
 4. Compute the saliencies for each parameter (based on h_{kk})
 5. Sort parameters by saliency and delete low-saliency ones
 6. Go back to step 2
- Optimal Brain Surgeon (OBS) - adjust remaining weights
- Optimal Cell Damage (OCD) - prune inputs
- Hessians are a little expensive to calculate
Neural Network Training
Passive VS Active

- Architecture and training algorithm are important, but so is the data

Passive learning
Neural network passively accepts the training data as given to it, and tries to fit it as well as possible

Active learning
Neural network is presented with a candidate training set. Heuristics are then used to choose the patterns that are most informative
Active Learning

- Redundant data may be dangerous
- If one class is over-represented, it may bias the NN
- Choosing most informative and relevant patterns:
 - Decrease training time
 - Improve generalisation
- Two main active learning approaches:
 - Selective learning
 - Incremental learning
Selective learning

Selecting patterns for training

- Given a candidate set, a subset of informative patterns is chosen as the training set.
- The model is trained until convergence/stopping criteria.
- New cycle starts by selecting a new subset for training.
- Selective Updating:
 - Start training on the candidate set.
 - At each epoch, see which patterns had the most influence on the weights, and discard the patterns that had the least influence.
 - Training set may change from epoch to epoch.
- Discard the patterns that have been classified correctly: this knowledge has already been absorbed.
- Engelbrecht: choose patterns that are close to decision boundaries (sensitivity analysis).
Incremental learning

Training incrementally

- Given a candidate set, a subset of informative patterns is chosen as the training set.
- That subset of patterns is removed from the candidate set.
- The model is trained until convergence/stopping criteria.
- New cycle starts by adding more patterns from the candidate set to the training set.
- As training progresses, the candidate set decreases, and the training set grows.
- Incremental learning does not discard patterns. Rather, it attempts to get the “best” ones first, and uses “weaker” ones to tweak a working model later.
- Eventually, the entire candidate set may be used for training.
Most incremental learning approaches are based on information theory (Fisher information matrix).

Optimal Experiment Design:
- At each iteration, choose a pattern from the candidate set that minimizes the E(MSE) (expected value).
- Expensive: need to calculate the information matrix inverse.

A problem: Fukumizu showed that the Fisher information matrix may be singular:
- It does not have an inverse!
- Same paper: Fisher matrix is singular iff the are redundant units.
- Remove units => solve the problem.
- Very complex and computationally heavy.
Incremental learning

Simpler approaches

- Information gain can be maximized by simply choosing patterns that yield the largest MSE.
- Use Robel’s factor \(\frac{E_G}{E_T} \): when overfitting is observed, add patterns that yield the largest errors.
- Many more methods exist, but all suffer from the following:
 - Overhead of using a heuristic
 - If we use more time to pick patterns than we save on training, was it worth it?
 - The data set should be bad/hard enough to justify these techniques.
Questions?

Next lecture: Unsupervised nets, presented by Will van Heerden