Department of Computer Science UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L02 UNIVERSITY OF PRETORIA
Introduction to UML and DP @Qume® VYUNIBESITHI YA PRETORIA
25 July 2014

Copyright (©2012 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
L02.1 Introduction

L02.2 Unified Modelling Language (UML)
L02.2.1 UML 2.x o e
L02.2.2 Class diagrams e
L02.2.3 Object diagrams
L02.2.4 State diagrams
L02.2.5 Activity diagrams
L02.2.6 Sequence diagrams
L02.2.7 Communication diagrams
L02.2.8 Internet resources

L02.3 Design Patterns
L02.3.1 Internet Resourceso

References

L02.1 Introduction

This lecture discusses the Unified Modeling Language (UML). It is a visual modelling
language used for software modelling and design in the object oriented paradigm of soft-
ware development. After providing a brief history of the language, an overview of the
components of UML 2 is provided.

Software design methods have strived to provide a way to model “good” design in software.
The notion and background to Design Patterns is given, which provides a foundation for
design.

L02.2 Unified Modelling Language (UML)

Prior to 1994, many people were busy developing modelling techniques and tools focussing
on different aspects of object-orientation. In 1991, Rumbaugh et al, proposed the Object-
modeling technique (OMT) which focussed on Object-oriented analysis (OOA). Grady
Booch, while working at Rationale in the early 1990’s developed the Booch method which
focussed on both OOA and Object-oriented design (OOD). In 1992, Ivar Jacobson devel-
oped Object-oriented Software Enginering (OOSE). Rationale bought out the company
for which Jacobson worked.

In 1995 Rumbaugh joined Rationale and started work on a modeling language along with
Booch and Jacobson. The trio are fondly referred to as the “T'hree Amigos”. The mode;ing
language they created unifies the respective languages they have independantly created
earlier. They named this languge UML. UML 1.x was released in 1996 and included class
diagrams, object modelling visualisations and use cases. In 2005, UML 1.4.2 was adopted
as an ISO standard. 2005 also saw the Object Modelling Group (OMG)! adopting UML
2.x and taking responsibility for further developing UML [4].

L02.2.1 UML 2.x

From the beginnings in UML 1 of supporting 3 diagram types, UML 2 supports 14.
Diagrams are divided into two broad categories, structural and behavioural. Figure 1
shows the diagram types supported by UML 2.

Structural diagrams depict what must be present in the system, being modelled. It shows
a static view of the software being modelled. There are five types of structural diagrams
namely class, object, package, component, and deployment diagrams.

Behavioural diagrams depict what the system being modelled must do. It models dynamic
aspects of the software over time. There are four types of behavioural diagrams namely use
case, state, activity and interaction diagrams. Interaction diagrams are further subclassed
into communication, sequence, timing and interaction overview diagrams.

The diagram types highlighted in blue are relevant to this series of Lecture Notes and will
be explained in more detail when required.

http://www.omg.org/gettingstarted/gettingstartedindex.htm

UML Diagram

Structural Behavioural

Component - Interaction

Package —

Deployment

Interaction

Overview Timing

Figure 1: UML diagrams

L02.2.2 Class diagrams

A class diagram show the classes that an object-oriented system comprises of as well as
the relationships between these classes. The internal structure of the class is described
in terms of attributes and operations. The relationships are of two types, those that
are related to the structure of the class and those that show the messages to be passed
between the classes [2]. An example of a class diagram is provided in figure 2.

Visual Paradigm for UML Standard Editiond Univer sity of Pretorial

Figure 2: An example of a class diagram

L02.2.3 Object diagrams

Object diagrams are a special type of class diagram. An object diagram depicts the state
of a system at a particular point in time. Object diagrams preserve the relationships
between objects and show the current “state” or values of the attributes of the particular
instances of the classes at a specific point in time. Figure 3 shows the state of the objects
in the class diagram that was given in Figure 2 at a specific point in time whilea user
called John Doe was doing a transaction on his savings account at a specific ATM in the
Hatfield Plaza.

accountNumber = 12345678 customerlD = 1213568

pinNumber = 55555 names = John

balance = 10000.00 surname = Doe
atm : ATM

unigueName = HATO3
location = Hatfield Plaza

Figure 3: An example of an object diagram

L02.2.4 State diagrams

State diagrams illustrate process in terms of state changes. A state diagram models
dynamic behavior of objects. It shows the changes in the state of an object. For example
the states of an ATM can be ‘Waiting’, ‘Connecting’, ‘Active’, etc. Figure 4 shows that
insertion of a card triggers the ATM to change from ‘Waiting’ to ‘Connecting’. If successful
it will change to the ‘Active’ state during which the user can perform various transactions,
otherwise it will eject the card and return to the ‘Waiting’ state. When the user indicates
that he/she wishes not to perform any more transactions, the ATM will eject the card
and return to the ‘Waiting’ state.

no more transactions [ejectCard

Waiting

4

card inserted

W _ another transaction
Connecting

|f Active
-
[unsuccessful] / ejectCard =" [successful] < |

Figure 4: An example of a state diagram

L02.2.5 Activity diagrams

Activity diagrams illustrate process in terms of activities. An activity diagram is a kind
of flow chart which shows the workflow behavior of an operation as a sequence of actions.
For example the activities while an ATM withdrawal is processed can be ‘insert card’,
‘enter PIN’, ‘check balance’; ‘eject money’, etc. Figure 5 models the activities of a cash

withdrawel process.
enter
pin

linvalid]

[>

[walid]

specify
amount

linsufficient funds)

eject [sufficient funds]
mnmwjf\

Figure 5: An example of an activity diagram

L02.2.6 Sequence diagrams

A sequence diagram is a type of interaction diagrams. Interaction diagrams model the
interaction between objects, also referred to the messages passed between objects. Com-
pared to the sequence diagrams in UML 1.x, the expressive power of sequence diagrams
has been increased in UML 2.x. Sequence diagrams show interaction between objects.
The order in which the messages are passed is visualised in the order of the communica-
tion lines in the diagram while all objects participating in the interaction are placed at
the top of the diagram. Figure 6 shows some interactions between the objects shown in
Figure 3 for a cash withdrawal transaction.

rfiUiniver sity g{Tigoria : BankAccount
customer ;. startTransaction() I) I
H 2.1 verifyPING) |
<~ Tzzvad T
3: requestWithdrawal()
3.1: withdraw()

3.2: dispenseCash()

4 gjectCard()

Figure 6: An example of a sequence diagram

L02.2.7 Communication diagrams

A communication diagram, like a sequence diagram, is a type of interaction diagram.
Communication digrams was referred to as collaboration diagrams in UML 1.x.

The main distinction between sequence and communication diagrams is that sequence
diagrams show interaction between objects over time while communication diagrams show
the depth of the interaction between objects.

In communication diagrams the objects participating in the interaction are placed in
proximity with one another to better visualise which objects are communicating directly
with one another irrespective of the order in which the messages are passed. Figure 7
shows the same interaction that is shown in Figure 6.

17 sraftTransaction) 'oes
3: requestWithdrawal()

CATM
customer 3.2: dispenseCashi()
2.2: valid + * 2.1: verifyPIN{)
4: ejectCard() 3.1 withdraw()
: BankAccount

Figure 7: An example of a communication diagram

L02.2.8 Internet resources

The following internet resources may be helpful and provide a very good overview of UML.

e Wikipedia:URL: en.wikipedia.org/wiki/Unified_Modeling_Language

e OMG: URL:www.uml.org, refer to the document that describes the superstructure
of UML

e Sparx System: URL:www.sparxsystems.com/resources/tutorial, presents a good
overview of UML in the form of a tutorlal

e Tutorials Point: URL:http://www.tutorialspoint.com/uml/uml_overview.htm,
another good tutorial on all the UML diagrams.

L02.3 Design Patterns

Patterns originated as an architectural concept when designing buildings. Christopher
Alexander introduced this concept in his 1977 book on architecture, urban design, and
community livability [1]. He proposed the following definition for a pattern.

FEach pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

Design patterns in software design are no different. In software systems there are problems
that occur over and over again for which design patterns can be identified to provide
solutions to the problems. The idea of applying patterns to software was formalised by
Kent Beck, of the Agile movement, and Ward Cunnigham and presented at OOPSLA in
1987.

The idea of software design patterns was originally not well received. It only started
to gain popularity after 1994 when Gamma et al published their book of design patterns
that describes simple and elegant solutions to specific problems in object-oriented software
design [3].

The authors of the book is affectionately referred to as the “Gang of Four” or GoF. In
the preface of the book, the GoF', states that the book neither introduces object-oriented
programming and design, nor is it an advanced reference for object-oriented programming.
They state that the book:

... describes simple and elegant solutions to specific problems in object-oriented
software design. Design patterns capture solutions that have developed and
evolved over time.

The 23 classical design patterns, discussed by GoF, are categorised according to their
purpose into Creational, Behavioural and Structural Patterns. A further level of categori-
sation applied has to do with the relationships between the classes. The object-oriented
concept of delegation is classified as “object” while patterns with a predominantly inher-
itance relationship structure are referred to as “class” patterns.

When writing software it is important to address the quality attributes of the solution
which includes user friendliness, effectiveness and efficiency. All patterns adresses one
or more software quality requirements. Some patterns addresses specific quality require-
ments. For example Singleton and Flyweight addresses efficiency of memory usage while
Prototype is aimed at reducing execution time.

Despite the fact that most patterns increases the execution speed owing to indirection
created through excessive use of inherritance and delegation, invariably adaptability and
maintainability of the code is greatly enhanced. Software applying design patterns is
usually more robust and reliable owing to the use of tried and tested techniques. Design
patterns are very useful abstraction tools that software engineers have at their disposal
moving design decisions to a higher level of abstraction. Programmers who are competent
in using design patterns are likely to be more effective in their work.

L02.3.1 Internet Resources

The following internet resources may be helpful and provide a very good overview of the
classic design patterns.

e Wikipedia:

— URL: http://en.wikipedia.org/wiki/Software_design_pattern, for an overview
of design patterns

— URL: http://en.wikipedia.org/wiki/Design_Patterns, for an overview of
GoF [3]

e Huston: URL: www.vincehuston.org/dp/

e OODesign: URL: www.oodesign.com

References

[1] Alexander C, Ishikawa S, and Silverstein M (1977) A Pattern Language: Towns, Build-
ings, Construction (Cess Center for Environmental). Oxford University Press, later
printing edn.

URL \url{http://downlode.org/etext/patterns/}

[2] Bennett S, Skelton J, and Lunn K (2001) Schaum’s Outline of UML. UK: McGraw-Hill
Professional.

[3] Gamma E, Helm R, Johnson R, and Vlissides J (1994) Design patterns : elements of
reusable object-oriented software. Reading, Mass: Addison-Wesley.

[4] Wikipedia (2012). Unified Modeling Language — Wikipedia, The Free Encyclopedia.
[Online; accessed 28-July-2012].
URL \url{http://en.wikipedia.org/w/index.php?title=Unified_Modeling_
Language&01did=504223112}

