Department of Computer Science

UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L08 UNIVERSITY OF PRETORIA
Abstract FactoryPattern Que® YUNIBESITHI YA PRETORIA

13 August 2014

Copyright (©2013 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
L08.1 Introduction

L08.2 Abstract Factory Pattern L.
L08.2.1 Identification e
L0K8.2.2 Structure
L08.2.3 Participants

L08.3 Abstract FactoryPattern Explained
L08.3.1 Clarification

L08.3.2 Common Misconceptions
L08.3.3 Related Patterns

L08.4 Example.
L08.5 Exercises

References s,

L08.1 Introduction

The Abstract Factory design pattern is a creational pattern used to produce product
with a common theme [2]. The factories are grouped together under a single interface
and linked to differentiated products. Each product hierarchy defines an interface.

L08.2 Abstract Factory Pattern

L08.2.1 Identification
Name Classification Strategy
Abstract Factory Creational Delegation (Object)
Intent

Provide an interface for creating families of related or dependent objects without
specifying the concrete classes. (Gamma et al. [1]:87)

L08.2.2 Structure

Client

AbstractProductA
AbstractFactory
+concreate ProductA()
+concreatePraductB()
P Ja
ConcreteProductA2 ConcreteProductAl

<3
|
N |
l l
l l
ConcreteFactory] ConcreteF actory 2 | |
+concreate ProductAl) +eoncreateProductA() [~ - """ T T T T TS T oo ' :
+concreate ProductB() +econcreateProductB) |- - - - _ _ o _ _ _ _ _ _ _ _ _ _ , |
| l
i
! : Abs tract ProductB |
l | .
l l !
l | !
l | !
l | !
l i |
i | |
i | |
i | :
: ConcreteProductB2 ConcreteProductBl |
l

l
l

l
|

l
l

l
l

l
l

|
|
l
l
l

Figure 1: The structure of the Abstract Factory Pattern

L08.2.3 Participants

AbstractFactory

e provides an interface to produce abstract product objects
ConcreteFactory

e implements the abstract operations to produce concrete product objects
AbstractProduct

e provides an interface for product objects
ConcreteProduct

e implements the abstract operations that produce product objects that are cre-
ated by the corresponding ConcreteFactory

Client

e uses the interfaces defined by AbstractFactory and AbstractProduct

L08.3 Abstract FactoryPattern Explained

L08.3.1 Clarification

The abstract factory comprises of concrete factories. It is the concrete factories that
creates product.

L08.3.2 Common Misconceptions

Important to note the subtle differences between Factory Method and Abstract Factory.
With Factory Method there is a one-to-one relationship between the factory and the
product, Abstract Factories exhibit a one-to-many relationship.

L08.3.3 Related Patterns

Factory Method or Protoype
The Abstract Factory makes use of the Factory Method or the Prototype for the
creation of product. The choice of which route to follow is implementation depen-
dent.

Template Method
May be used within the abstract factory and product hierarchies.

Singleton
Concrete factories may be implemented as Singletons..

L08.4 Example

Consider a classification for two-dimensional shapes. 2D shapes are further classified as
either polygons or not being a polygon. Figure 2 presents the hierarchy for polygons
represented by the system.

Polygons are classified as either quadrilaterals or triangles. All these classes are abstract.
The concrete classes are those that inherit from Quadrilateral and Triangle. The
Polygon hierarchy forms that product hierarchy for polygons.

The product hierarchy for non-polygons is shown in figure 3. NonPolygon is an abstract
class, while the E11ipse and Circle classes are both concrete classes.

As both these hierarchies represent two-dimensional shapes, another abstract class, the
Shape class is introduced in order to ensure consistency in both hierarchies (refer to figure
4). This class does not form part of the Abstract Factory design pattern, but does not
detract from it either. It merely defines the common aspects of all two-dimensional shapes.

The class Shape holds two state attributes that are of interest in this example. The first
is LoS, or lines of symmetry, for each concrete shape the lines of symmetry is stored. The
second interesting attribute is RS which represents the order of rotational symmetry of
the shape. Some shapes have a RS of order 0, while other shapes such as a circle have a

RS of infinity.

Till now, the example only comprises of a hierarchy of two-dimensional shapes. Notice
that this hierarchy classifies the shapes in terms of their structural characteristics. The
attributes of LoS and RS are just that, attributes, and do not form part of the classifica-
tion. In order to mesh the symmetry classification with the structural classification, an
abstract factory can be used to produce the shapes according to the symmetry character-
istics. The class that represents the Abstract Factory participant of the design pattern is
in figure 5.

The two concrete classes produce objects that are either line symmetric or rotational
symmetric. The classification of polygon and non-polygon is also preserved as each of
the classes produce their respective polygon types as well. The code showing how the
ConcreteFactory classes are implemented is given to show how the classes are linked.

class LineSymmetricShapeFactory : public ShapeFactory {
public:
LineSymmetricShapeFactory () : ShapeFactory () {};
LineSymmetricShapeFactory (int lines) {magnitude = lines;};
Shapex createPolygonInstance () {
switch (magnitude) {
case 0 : return new RightAngledTriangle;
// or return new Parallelogram;
case 1 : return new IsoscelesTriangle;
case 2 : return new Rectangle;
// or return new Oblong;
case 3 : return new EquilateralTriangle;
case 4 : return new Square;
default: return 0;

Shapex createNonPolygonInstance () {
if (magnitude = 2)
return new Ellipse;
return new Circle;

}
}s

class RotationalSymmetricShapeFactory : public ShapeFactory {
public:
RotationalSymmetricShapeFactory () : ShapeFactory () {};
RotationalSymmetricShapeFactory (int order) {magnitude = order;};
Shapex createPolygonInstance () {
switch (magnitude) {
case (0 : return new IsoscelesTriangle;
// or return new RightAngledTriangle ;
case 2 : return new Parallelogram;
// or return new Rectangle;
// or return new Oblong;
case 3 : return new EquilateralTriangle;
case 4 : return new Square;
default: return 0;

}
}s

Shapex createNonPolygonInstance () {
if (magnitude — 2)
return new Ellipse;
return new Circle;

}
}s

To illustrate how the abstract factory is used to produce product, consider the following
main program.

int main() {
ShapeFactory+x factory = new ShapeFactory x[2];
factory [0] = new LineSymmetricShapeFactory;
factory [1] = new RotationalSymmetricShapeFactory (2);

Shapex shapes[4];

shapes [0] = factory[0]—>createPolygonInstance ();
shapes[1] = factory[0]—>createNonPolygonInstance ();
shapes [2] = factory[l]—>createPolygonlnstance ();
shapes [3] = factory|[l]—>createNonPolygonInstance ();

for (int i=0; i < 4; i++) {
if (shapes[i] != 0)
shapes[i]—>setState ();

}

for (int i=0; 1 < 4; i++) {
if (shapes[i] != 0)

cout << ”"Area._=_" << shapes[i]->area() << endl;

}

for (int i=0; i < 4; i++) {
if (shapes[i] != 0)
delete shapes|[i];

}

for (int i=0; i
delete factory

}

delete |[] factory;

' ;i) {

< 2
[1]

I

return 0;

L08.5 Exercises

1. Merge the class diagrams given in figures 2, 3, 4 and 5. Make sure that all the del-
egation, specifically the dependencies, relationships between the concrete factories
and the concrete products are included.

2. Consider the class diagram presented in figure 6 and identify the participants.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[2] Wikipedia. Abstract factory pattern — wikipedia, the free encyclopedia. http://
en.wikipedia.org/wiki/Abstract_factory_pattern, 2011. [Online; accessed 12-
August-2013].

Wisual Paradigm for UML Standard Edition{Univer

Figure 2: Polygon class hierarchy

Figure 3: NonPolygon class hierarchy

Unieersity of

Figure 4: Overarching abstract Shape class

Edition{Un ﬂfn’pﬂﬁmw
#magnitude : int
+5hape Factory()

+createPolygoninstance()
+createNonPolygoninstance ()

LineSymmetricShapeFactory Rotational S5y mmetricshapeFactory
+LinesymmetricshapeFactonyg() +RotationalSym metricShapeFactony()
+LineSymmetricShapeFactory() +RotationalSymmetricShapeFactory()
+createPolygoninstance() +createPolygoninstance()
+createMonPolygoninstance() +createMonPolygoninstance()

Figure 5: Abstract Factory class hierarchy diagram

“PeanutHardCandy
“+PeanutHardCandy{)

CandyFactory
-mMame : string
+CandyFactoryi)
CaramelHardCandy +setName()
+CaramelHardCandy() L>[+HardCandy([S---------------------------- +tname) oo oo --—- oo oo '
+createChocolate() !
| | +createHardCandy() :
| | +createCandy() !
- D <t |
Voo : |
| | | |
! ! I I
| | 1 |
| |
| | CaramelFactory : :
: : +CaramelFactory() | |
| [+createChocolate) |- _ - - __ _____ ____ , : :
: +createHardCandy() | | |
| +createCandyi) 1 : :
: T ! ! |
| ! I |
! I i I I
1 l ! l
i | Chocolate i
: : +Chocolate(y [<] +PeanutChocolate() :
| \ |
! ! !
! I ! I
! I ! l
! l ! I
! I ! !
i I i I
| ! . !
i ! | !
| ! | |
| ! | |
| : | |
| ! | |
| ! | |
| ! | |
| : CaramelChocolate | :
: | +CaramelChocolate() : :
|
| ! |
! : } I
1 I | !
M v | !
| Candy PeanutFactory \
: -mMName : string +PeanutFactory(!
oL ISl cetNamel) e = e e e e oo] +createChocolate() :
: +namef) +createHardCandy() |
| +createCandy() :
I M T |
| | |
| | |
| | h
| | |
| | |
| b e
|
|
|
|

Figure 6: Candy class hierarchy diagram

