Department of Computer Science

UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L09 UNIVERSITY OF PRETORIA
Strategy DeSIgn Pattern v YUNIBESITHI YA PRETORIA

15 August 2014

Copyright (©2012 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
L09.1 Introduction

L09.2 Programming preliminaries. L.
L09.2.1 Controlling coupling

L09.3 Strategy Design Pattern
L09.3.1 Identification
L09.3.2 Structure
L09.3.3 Problem e
L09.3.4 Participantso

L09.4 Strategy Pattern Explained
L09.4.1 Improvements achieved
L09.4.2 Disadvantages e
L09.4.3 Practical examples
L09.4.4 Implementation Issues

L09.4.5 Common Misconceptions
L09.4.6 Related Patternso

L09.5 Example.
L09.6 Exercises o,

References s,

L09.1 Introduction

In this lecture you will learn all about the Strategy Design Pattern. This pattern has
proven to be a very useful pattern. Owing to its elegance it is often used.

We discuss the concept of controlled coupling and why it is considered good practice to
control coupling. Most of the design patterns are aimed at controlling coupling in order to
enhance maintainability of the code. We illustrate how the Strategy design pattern solves
a specific class of problems by applying a standard design solution aimed at controlling
coupling.

L09.2 Programming preliminaries

L09.2.1 Controlling coupling
[Fowler(2001)] identify coupling by stating:

If changing one module in a program requires changing another module, then
coupling exists.

Coupling impacts negative on the maintainability of a system. The larger the number
of modules that needs to be changed to extend or adapt a system, the more difficult it
becomes to implement these changes without breaking some code. Coupling occurs when
code in one module uses code from another, either by calling a function or accessing some
data. It is practically impossible to avoid coupling. It can, however, be controlled. It is
important to organise coupling using familiar patterns of dependencies between modules
— this is mostly what design patterns are about; i.e. prescribing patterns of dependencies
between modules that contributes to the maintainability of the code.

Client Class

Class n

\ _________________ method n

""""
Class2 | .-~
.

A

Class 1 method 2

method 1

Figure 1: Uncontrolled relations of a client with multiple classes

Defining an interface to serve as a communication hub is a fundamental way to break
dependencies and reduce coupling. This strategy is applied in many of the design patterns
of which the Strategy design pattern is a very nice example. Figure 1 shows a number

Client Class Interface Class

» virtual method

Derived Class 1 Derived Class 2 Derived Class n

concrete method 1 concrete method 2 concrete method n

Figure 2: Controlled relation of a client with multiple classes through an interface

of modules who have uncontrolled relations with a client application. Figure 2 shows
how this should be organised into a familiar pattern that you will often see in the design
patterns.

L09.3 Strategy Design Pattern

L09.3.1 Identification

Name Classification Strategy
Strategy Behavioural Delegation
Intent

Define a family of algorithms, encapsulate each one, and make them interchange-
able. Strategy lets the algorithm vary independently from clients that use it
([Gamma et al.(1994)Gamma, Helm, Johnson, and Vlissides]:315)

L09.3.2 Structure

Strategy = = -
: oncretestrategy
+algorithmi)

SAVLEAT g +algarithmi{)
-strategy ! Strategy®
bl ConcreteStrategyB

| <l +algarithmf{)

:

|

I |sTrategy-=algorithnd], ConcreteStrategyC

i +algarithm{)

Figure 3: The structure of the Strategy Design Pattern

L09.3.3 Problem

An implementation implementing different algorithms to solve the same problem requires
uncontrolled coupling with its clients that can be avoided. I.e. the implementation consist
of a variation of classes for implementing different algorithms to solve a given problem
and clients need to couple individually with these classes.

L09.3.4 Participants

Strategy

e Declares an interface common to all supported algorithms.

e Context uses this interface to call the algorithm defined by a ConcreteStrategy.
ConcreteStrategy

e Implements the algorithm using the Strategy interface
Context

e [s configured with a ConcreteStrategy object.
e Maintains a reference to a Strategy object.

e May define an interface that lets Strategy access its data.

L09.4 Strategy Pattern Explained

L09.4.1 Improvements achieved

e Where various classes provide different implementations of the same routine, inter-
face details is encapsulated in a base class, while the implementation details are
provided in derived classes. Clients can now couple themselves to the interface, and
will be shielded from changes if algorithms need to be changed: no impact when
the number of derived classes changes, and no impact when the implementation of
a derived class changes.

e Usually the implementation of the Strategy pattern eliminates the need for a com-
plicated conditional statement to select the desired strategy.

e When encapsulating an algorithm in its own class it is possible to define complex
algorithm-specific data structures in this class and consequently avoid exposing them
to the clients that use the algorithm. This way the implementation of the algorithm
is more robust.

e When heuristics are applied to programmatically select an appropriate strategy, this
selection my involve the implementation of complex selection structures such as a
switch-statement or cascading if-statements. Encapsulating these in a Context
class relieves clients from having to implement them.

L09.4.2 Disadvantages

e The coupling between the Strategy interface and the Context class might be wider
than always needed. The interface must cater for everything that is needed by
each of the strategies. This is the union of the needs of all the strategies. Not all
strategies use the whole interface resulting in parameters initialised an never used.

L09.4.3 Practical examples

A classic example often used to illustrate the strategy design pattern is to implement a sys-
tem that offers a method to choose between different algorithms for sorting [Bishop(2008)].
This is probably a popular example because most programmers are familiar with the var-
ious sorting algorithms and their respective time-space tradeoffs.

There are many other problems for which there are known alternative algorithms to solve
the problem, each with their own situational benefits and drawbacks. When a problem
requires the system or the user to decide which algorithm should be used to solve the
current instance of the problem, the application of the Strategy design pattern is ideal for
the implementation of such system. The following are a few practical examples:

e Save files in different formats or compress files using different compression algo-
rithms.

e Provide different routing algorithms in GPS navigational software.
e Provide different validating strategies for input fields.
e Apply different line-breaking strategies to display textual data.

e Apply different routing algorithms to manage network traffic to select to the most
effective algorithm based on current traffic patterns.

e Apply different register allocation schemes when compiling code to provide flexibility
in targeting code optimisation for different machine architectures.

L09.4.4 Implementation Issues

When implementing the pattern one have to provide a way to choose the most appro-
priate strategy [Cooper(2003)]. This can be implemented programmatically or may be
implemented to be user-driven. If it is implemented programmatically, the context should
implement heuristics to select the most appropriate strategy based on specified criteria.
If it is implemented user-driven, the system has to provide an interface for the user to
select one of the available strategies. This interface should preferably be implemented by
the client. In this case the context only need to provide methods that can be called by
the client to change the strategy.

Another thing that needs to be considered is how implemented algorithm is granted
access to the data it has to manipulate. The context may pass the data to the algorithm
through parameters. If the data structures involved are large, it is desirable to pass
a pointer to the data rather than duplicating data. In some cases it may be useful

to pass a pointer to the Context to the algorithm and allow the algorithm to operate
directly on the data stored in the Context using a call back mechanism. Alternatively,
the strategy can store a reference to its Context, eliminating the need to pass anything a
all [Gamma et al.(1994)Gamma, Helm, Johnson, and Vlissides]. This technique couples
the Strategy and the Context more closely. The data requirements of the particular
problem and its algorithms will determine the best technique.

L09.4.5 Common Misconceptions

e When the different strategies are simple methods implemented without encapsu-
lating them in classes that are polymorphic subclasses of an interface, the system
implements the desired functionality but is not an application of the Strategy design
pattern.

L09.4.6 Related Patterns

Factory Method
Both Strategy and Factory Method use delegation through an abstract interface to
concrete implementations. However, Strategy performs an operation while Factory
Method create an object.

State
The Sate and Strategy patterns have the same structure and applies the same tech-
niques to achieve their goals. However, they differ in intent. The Strategy pattern is
about having different implementations that accomplishes the same result, so that
one implementation can replace the other as the strategy requires while the State
pattern is about doing different things based on the state, while relieving the caller
from the burden to accommodate every possible state.

Flyweight
Strategy objects often makes good flyweights.

L09.5 Example

Figure 4: Class Diagram of a system illustrating the implementation of the Strategy
design pattern

; PowCalculator
main() +calculate(: double, 2 ! double)

+isinteger(. double) : bool

Version
-strategy : PowCalculator®
< <constructor=> +Version(} <::>—
+- Mersion}
+upGrade() - -
+d§'?wl(]rade{p . double) SiepByiiten QuickAndDirty
+calculate(base : double, exp : double) ~calculate(b : double, p : double) ~calculate(b : double, p : double)

Figure 4 is a class diagram of an application that implements the strategy design pattern.
It implements two different strategies to calculate x¥.

Participant Entity in application
Context Version

Strategy PowCalculator

Concrete Strategies | StepByStep, QuickAndDirty
algorithm() calculate()

Client main()

Context

e The Version class act as the context.

e The implementation of the calculate () method is a redirection to the calculate ()
method of the current concrete strategy. The handle to this method is provided
by the strategy instance variable of Version.

e The upgrade() and downgrade() methods are provided to enable clients to
change the active strategy on the fly.
Stratgey
e PowCalculator is an abstract class that implements an interface containing
the pure virtual calculate() method.

e For the purpose of this application a isInteger () method is also defined. This
method is used to determine if a given double variable holds an integer value.
This is used to manipulate the output and also to decide if the step-by-step
strategy may be applied.

ConcreteStrategy

e The classes StepByStep and QuickAndDirty act as concrete strategies.

e The StepByStep strategy implements repeated multiplication while the QuickAndDirty
strategy applies the math.pow() function.

e To be able to distinguish between the execution of these strategies, they display
their results differently.
Client

e In this application the client has a Version object called application through
which the appropriate implementations of calculate() is executed.

L09.6 Exercises

1. Write a system that implements the strategy design pattern to allow the user to
select different representations of data values that are stored in a text file. Your
system should read an unknown number of integer values from the text file and
store them in an array in the Context. One concrete strategy should write out the

values as pairs in set notation. The first coordinate of each pair is an index value
while the second coordinate is the value that was read from the file. For example if
the file contained the values 5, 7, 2, 12 and 9, the output should be:

{(1,5); (2,7); (3,2); (4,12), (5,9)}

Another strategy should produce a bar chart. For example the above mentioned
data should produce the following output:

01: XXXXX
02: XXXXXXX
03: XX

04: XXXXXXXXXXXX
05: XXXXXXXXX

2. Write a system that can be used for sorting an array of objects using different
sorting algorithms. Apply the strategy pattern to allow dynamic switching between
algorithms. Implement each algorithm as a template method to enable sorting of
different kinds of objects.

References

[Bishop(2008)] Judith Bishop. C# 3.0 design patterns. O’Reilly, Farnham, 2008.

[Cooper(2003)] James W. Cooper. C# design patterns: a tutorial. Pearson Education,
Inc, Boston, 2003.

[Fowler(2001)] Martin Fowler. Reducing coupling. IEEE Software, 18(4):102 —104,
jul/aug 2001. ISSN 0740-7459.

[Gamma et al.(1994)Gamma, Helm, Johnson, and Vlissides] Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. Design patterns : elements of reusable
object-oriented software. Addison-Wesley, Reading, Mass, 1994.

