Department of Computer Science

UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L10 UNIVERSITY OF PRETORIA
State DeS|gn Pattern v YUNIBESITHI YA PRETORIA

18 & 19 August 2014

Copyright (©2014 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
L10.1 Imntroduction e
L10.2 Protected Variations GRASP principle

L10.3 State Design Pattern. L.
L10.3.1 Identification
L10.3.2 Structure
L10.3.3 Problem
L10.3.4 Participants

L10.4 State Pattern Explained
L10.4.1 Improvements achieved
L10.4.2 Disadvantages
L10.4.3 Implementation Issues

L10.4.3.1 Changing State
L10.4.3.2 Sharing State Objects oL
[L10.4.3.3 Creating and destroying State objects.
L10.4.4 Related Patternso

L10.5 Example.

References s,

L10.1 Introduction

In this lecture you will learn all about the State design pattern. It is a good example
of the application of the Protected Variation Principle that is commonly applied to al-
leviate problems associated with having to change systems during or after development.
Therefore, this principle is briefly discussed.

L10.2 Protected Variations GRASP principle

General Responsibility Assignment Software Principles (GRASP) is a series of 9 principles
proposed by Larman [3] that should be used to govern software design. It is a learning aid
to help you understand essential object design and apply design reasoning in a methodical,
rational, explainable way. When we discuss the use of the different design patterns, we will
refer to the GRASP principles applied by these patterns and introduce these principles
as needed.

One of the problems that has been identified as a reason why projects fail is the impact of
change during development. Change is inevitable. When mismatches in the expectations
and perceptions of different stakeholders are discovered, adjustments are needed to resolve
these mismatches in order to deliver a satisfactory system.

The principle we introduce here is called Protected Variations (PV). It addresses the
problem of the introduction of bugs when code is changed by designing to minimise the
impact of code change on other parts of the system. PV suggests that points of predicted
variation or instability be identified, and that responsibilities be assigned in such a way
that a stable interface is created around them ([3]:427). This is generally done by adding
a level of indirection, an interface, and using polymorphism to deal with the identified
points of predicted variation.

L10.3 State Design Pattern

L10.3.1 Identification

Name Classification Strategy
State Behavioural Delegation
Intent

Allow an object to alter its behaviour when its internal state changes. The object
will appear to change its class. ([1]:305)

L.10.3.2 Structure

‘ s T e state State
Client state : State [+handlef
______ +request() A JAN

ConcreteStated ConcreteStateB
+handlef) +handle(

void request()

{
1

state.handle();

Figure 1: The structure of the State Design Pattern

L10.3.3 Problem

The two major problem areas [2] that exist in which the state pattern can make a contri-
bution are:

e when an object becomes large; and

e when there is an extensive number of state changes an object can go through.

The behaviour an object exhibits is dependent on the state of the object. Changing the
state of an object will therefore influence the behaviour of the object at run-time. When
objects become large, changing their state can become difficult. In order to control the
complexity of changing state, the state of the object is managed externally to the object
itself.

An object may be required to change state many times and into many different states.
When these states become numerous and the flow is controlled by choice-statements (such
as if or switch in C++), the ability to manage the statement flow diminishes. In order
to control this complexity, the state of an object can be managed externally to the object
itself by modeling the states as objects in their own right.

L10.3.4 Participants

State

e Defines an interface for encapsulating the behavior associated with a particular
state of the Context.

ConcreteState

e Implements a behavior associated with a state of the Context.

Context

e Maintains an instance of a ConcreteState subclass that defines the current
state.

e Defines the interface of interest to clients.

L10.4 State Pattern Explained

The application of the State Design Pattern is an example of the application of the PV
principle. If the system is required to change its behaviour depending on its state, the
different bahaviours are a candidate for a point of predicted variation which should be
wrapped in a stable interface. The State participant in the State Design Pattern serves as
the stable interface required by this principle while the concrete state classes are isolated
in the system to accommodate changes that will not impact on the rest of the system.

The State Pattern applies polymorphism to define different behaviour for different states.
Thus, behaviour is altered by executing the code that is implemented in different sub-
classes. However, the strategy used by this pattern is mainly delegation. The Context
class delegates work to be done to these polymorphic classes instead of doing it itself.
This way no complicated decision structures are needed in the Context class to cater for
different state dependent behaviours.

Client programs should not interact directly with the states. All calls to methods in the
concrete state classes are redirections from methods in the context class. Thus, clients
will only call methods in the context class. Clients are also not allowed to change the
state of the context without the context’s knowledge.

L10.4.1 Improvements achieved

e Increased maintainability
The State pattern puts all behavior associated with a particular state into one
object. Because all state-specific code lives in a State subclass the code associated
with behaviour in a given state is localised and hence easier to maintain. It is also
easy to define more states and transitions by defining new subclasses.

¢ Eliminate large conditional statements
Like long procedures, large conditional statements are undesirable. They’re mono-
lithic and tend to make the code less explicit, which in turn makes them difficult to
modify and extend. The State pattern offers a better way to structure state-specific
code. The logic that determines the state transitions doesn’t reside in monolithic
if or switch statements but instead is partitioned between the State subclasses.
That imposes structure on the code and makes its intent clearer.

e Makes state transitions explicit

When an object defines its current state solely in terms of internal data values, its
state transitions are implicit and have no explicit representation; they only show
up as assignments to some variables. Introducing separate objects for different
states makes the transitions more explicit. Also, State objects can protect the
Context from inconsistent internal states, because state transitions are atomic from
the Context’s perspective — they happen by rebinding one variable (the Context’s
State object variable), not several.

L10.4.2 Disadvantages

e Higher coupling
The State pattern introduce high coupling. The pattern distributes behavior for
different states across several State subclasses. This increases the number of classes
and is less compact than a single class and will require more communication between
classes that would be the case if all was implemented in a single class.

L10.4.3 Implementation Issues

L10.4.3.1 Changing State

When implementing the state pattern one has to decide which class will be responsible
to implement the change of state. There are three possible methods that can be applied:

a) Context applying fixed Criteria

If the criteria are fixed, then they can be implemented entirely in the Context in the
normal flow of events. If this can not be done without conditional statements this
approach is probably not appropriate. The disadvantage of this method is that it is
not flexible and it is likely that the context code has to change when more states are
added to the system. It is generally more flexible and appropriate, however, to let
the State sub classes themselves specify their successor state and when to make the
transition as described in the following two methods.

o f " Contéxt state State
Client —state : State [<> +handle(
PR — +request() +getNextState() : State
o - -|tsetState()

void request()

state.handle():

ConcreteStated

ConcreteStateB

+hand|el
+getNextstatef) ; State

+handlef)
+getNextstatef) : State

}

void setState()

{
state = state.
getNextState(),;

Figure 2: The context is responsible for changing state

b) Context applying variable criteria
When the context is responsible for changing the state it will be done in terms of an
implementation as shown in Figure 2. Decentralizing the transition logic in this way
makes it easy to modify or extend the logic by defining new State subclasses. In this
case coupling is lower than in the following method since the State is unaware of the
Contexts. However, memory management in the context might be difficult. The new

state needs to be requested from the current state and thereafter the current state
value has to be updated.

L i ton{UneC gmtet state State
Client -state : State Qi#mnt&xt » Context
P +request() rontext +handleg
! +setState(state : State) +changeState()
i
i
|
i
|
void request() ConcreteStateA ConcreteStateB
{ +handlel +handlel
state.handle(): - - - -| +changeState() +changeState()
H

vold changeState()
{

State® state = new Concrete5SateB();
context.setState(*state);

1

Figure 3: The state is responsible for changing state

c) Concrete States applying variable criteria

When the concrete states are responsible for changing the state it will be done in terms
of an implementation as shown in Figure 3. This requires adding an interface to the
Context that lets State objects set the Context’s current state explicitly. In this case
the coupling is higher since the State has to be aware of the Context. This can be
implemented either by maintaining a reference to its context as shown in this figure,
or by passing a pointer to the context as a parameter to the state (as we have done in
the example in Section L10.5).

Note that in the last two of the above methods the concrete states are responsible for
indicating the new state the context should assume when changing state. They adhere to
the Protected Variations Principle while the first method does not. Any changes in the
code related to changes in existing states as well as the addition or removal of states when
applying the last two methods will not require any changes to the code in the Context
class.

L10.4.3.2 Sharing State Objects

State objects can be shared. If State objects have no instance variables — that is, the state
they represent is encoded entirely in their type — then contexts can share a State object.
When states are shared in this way, they are essentially flyweights with non-intrinsic state,
only behaviour.

L10.4.3.3 Creating and destroying State objects.

A common implementation trade-off worth considering is whether (1) to create State
objects only when they are needed and destroy them thereafter versus (2) creating them

6

ahead of time and never destroying them. The first choice is preferable when the states
that will be entered aren’t known at run-time, and contexts change state infrequently.
This approach avoids creating objects that won’t be used, which is important if the State
objects store a lot of information. The second approach is better when state changes occur
rapidly, in which case you want to avoid destroying states, because they may be needed
again shortly. Instantiation costs are paid once up-front, and there are no destruction
costs at all. This approach might be inconvenient, though, because the Context must
keep references to all states that might be entered.

L.10.4.4 Related Patterns

Strategy
The Strategy and State patterns have the same structure and both apply the PV
Principle to achieve their goals. However, they differ in intent. The Strategy pattern
is about having different implementations that accomplishes the same result, so that
one implementation can replace the other as the Strategy requires while the State
pattern is about doing different things based on the state, while relieving the caller
from the burden to accommodate every possible state.

Singleton or Prototype
When implementing the state pattern, the programmer has to decide on how the
state objects will be created. Often the application of the Prototype pattern will be
ideal. State objects are also often Singletons.

Flyweight
State objects can be shared by applying Flyweight.

L10.5 Example

fisual Paradigipfigel/ML Standard t ty of f Dispasiﬁnﬂ
-mood : Disposition® #moodText : charf5]
+Boss() mood | +helpMe() : vaid

+helpMe() : void <> +directMelb : Boss *) : void

+directMel) : void +getMood() : char *

+getMood(: char * +changeMood() : Disposition *
~changeMood(: void Fanswer() : void
N
Bad Mood OkMood GoodMood
+BadMood() +0kMood() +GoodMood()
+helpMe() : void +helpMe() : void +helpMe() : void
#answerl) : void #answerl) : void #answerl) : void
#changeMoodi) : Disposition * #changeMood() : Disposition * #changeMood() : Disposition *

Figure 4: Class Diagram of a moody Boss simulation

Figure 4 is a class diagram of an application that implements the State design pattern. It
is a nonsense program that implements three different states a Boss object can assume.
The different behaviours of the Boss object is simulated in terms of different messages
describing actions in the different states. These cout statements are mere placeholders
where code that implements different behaviours can be inserted.

Context
[]
[}
[}
o

State
[]
[}
[J

Participant Entity in application

Context Boss

State Disposition

Concrete States | BadMood, OKMood and GoodMood
request() helpMe() and directMe()

handle() helpMe() and answer()

The Boss class act as the context.

The implementation of both the helpMe () method and the directMe () method
are redirections to the methods with the same names in the Disposition
interface. The handle to these methods are provided by the mood instance
variable of Boss.

the getMood () method is provided to be able to display the current mood in
order to verify the program state during execution.

The changeMood () method is provided to enable a Boss object to change its
own disposition. It is defined privately to prevent other objects to be able to
change the Boss’s state.

Disposition is an abstract class that implements an interface containing the
methods that implement variations in behaviour that is state dependent.

helpMe () is a pure virtual method. When the helpMe () method in the Boss
class is executed, execution is redirected to the method with the same name in
the appropriate concrete state.

directMe() is a template method. When the directMe() method in the
Boss class is executed, execution is redirected to this method. In turn it
calls the answer () method in the appropriate concrete state and also executes
the changeMood () method of the appropriate concrete state and use the value
returned by this method to manipulate the mood variable of the Boss class.
This is an illustration of how the state is maintained when the concrete states
are responsible for changing the state.

Concrete States

The classes BadMood, 0KMood and GoodMood act as concrete states.

Each class provides its own implementation of the state dependent actions as
defined by the virtual methods that are defined in the Disposition interface.

To be able to distinguish between the execution of these methods, they display
different messages.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[2] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

[3] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice-Hall, New York, 3¢ edition,
2004.

