Department of Computer Science

COS121 Lecture Notes:

Coding Standards Qe

22 August 2014

Copyright (©2013 by Vreda Pieterse and Derrick

Contents

UNIVERSITEIT VAN PRETORIA
L11 UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Kourie. All rights reserved.

L11.1 Introduction s,

L11.2 Classification of coding standards

L11.3 Style . . .

L11.3.1 Naming conventions
L11.3.2 Layoutrules

L11.4 Clarity . .

L11.4.1 Organisation and Order of presentation
L11.4.2 Selection of identifier names L.
L11.4.3 Commenting practices

L11.4.4 Control str
L11.5 Flexibility

L11.6 Reliability

ucture styleo

L11.6.1 Avoiding logical and runtime errors

L11.6.2 Scope and
L11.6.3 User orient

L11.7 Efficiency
L11.8 Conclusion

References

accessibilityo oo
ation

L11.1 Introduction

A coding standard can broadly be defined as a set of programming styles and practices to
which a group of people adhere, in the belief that such adherence contributes the overall
efficiency in producing high quality code that is understandable and maintainable.

There is ample literature that discusses the benefits of having uniform coding styles and
standards. Scott Ambler, the Practice Leader Agile Development at IBM Corporation in
the IBM Methods group once said:

Inexperienced developers, and cowboys who do not know any better, will often
fight having to follow standards. They claim they can code faster if they do it
their own way. Pure hogwash. They MIGHT be able to get code out the door
faster, but I doubt it. Cowboy programmers get hung up during testing when
several difficult-to-find bugs crop up, and when their code needs to be enhanced
it often leads to a major rewrite by them because they’re the only ones who
understand their code. Is this the way that you want to operate? I certainly
do not. [1]

Coding standards are laid down to achieve robust and error free code that is easy to use,
understand and maintain. Style is a crucial component of professionalism in software
development. Clean code that follows stylistic conventions is easier to read, maintain,
and share with colleagues. When a consistent style is used throughout a project, it
makes it easier for the developers working on the project to understand each others code.
Oman and Cook [6] found through empirical studies that the style used when writing
or maintaining a program has a direct impact upon the quality of the software and the
comprehensibility and maintainability of a program.

Adhering to styles and standards based on good programming practices is not only ben-
eficial for sharing and understanding code among programmers. These practices can also
increase the productivity of individual programmers and simplify the evaluation of code
written by students. Programmers who code in good style are less likely to have silly bugs
and will most likely spend less time developing and debugging their code.

L11.2 Classification of coding standards

Coding standards and guidelines can be classified into the following five broad cate-
gories [7]:

Style: Guidelines and standards in this category deal with layout issues.

Clarity: These are about measures, besides typographic rules, that can enhance the
readability and understandability of code.

Flexibility: In the software engineering industry it is paramount that software should
be agile and portable. These standards are guidelines to enhance the adaptability
and portability of the code.

Reliability: Reliability concerns the production of user-friendly, robust and error-free
code. These are guidelines and practices that are aimed at reducing the chances
of making common silly programming errors and reducing chances of program mal-
function due to user actions.

Efficiency: Efficiency is about writing elegant code that uses its resources sparingly.
Standards aimed at efficiency are rules to follow to utilise resources such as memory,
CPU time, disk space, etc. efficiently without compromising other resources such
as programmer effort and money.

In the following sections each of these categories are discussed in more detail. Specific
standards are specified. Many of these have been adapted form coding standards specifi-
cations by Horstmann [2].

You are required to faithfully adhere to these standards, not only in COS132, but in
all other Computer Science courses taken at Pretoria University. In any commercial en-
terprise where software development is important, you will find a similar set of coding
standards, probably differing in some of the details, but addressing the categories men-
tioned below. Because the standards that have been recommended in this text have
evolved over several years, they occasionally differ from those followed in the text book.

L11.3 Style

Standards related to style prescribe typographical requirements. The purpose of these
standards is to improve consistency and neatness in the appearance of the code. Adherence
to these standards enhances program readability.

L11.3.1 Naming conventions

e Use ALL_CAPS for named constants, and camelCase for all other identifier names.
e Identifiers of variables, functions and methods should start with a lowercase letter.

e Class names should be capitalized (start with an initial capital letter).

L11.3.2 Layout rules

e Use indentation and blank lines to reveal the subordinate nature of blocks of code.
Each line which is part of the body of a control structure (if, while, dowhile, for,
switch) is indented one tab stop from the margin of its controlling line. The same
rule applies to function, struct, or union definitions, and aggregate initialisers.

e Use blank lines freely to separate parts of a function or method that are logically
distinct.

e Use a blank space around binary operations.

e Leave a blank space after (and not before) each comma, colon or semicolon.

e Lines of code should never extend beyond the right hand side of a resonable window
width on the screen. Limiting each line of code to 80 columns will ensure that this
is achieved.

e If a hard copy of a program list is made, insert page-breaks to avoid code blocks
from spanning over page breaks.

e We do not require specific placement of opening and closing braces. We do, how-
ever, require consistency. According to Sutter and Alexandrescu [8], a professional
programmer will not have difficulty in reading any of the following styles. Choose
one of them and use it consistently throughout all the code of one project.

int main ()

{
cout << ”Programming is great fun!” << endl;
return 0;

}

int main () {
cout << ”Programming is great fun!” << endl;

return 0;
}
int main()
{
cout << ”Programming is great fun!” << endl;
return 0;
}

L11.4 Clarity

Clarity is about measures, besides typographic rules, that can enhance the readability
and understandability of code. The organisation and order of presentation, the careful
selection of identifier names, and the content and writing style of comments play an
important role in the clarity of code.

L11.4.1 Organisation and Order of presentation

e When the main function calls other functions, they may be defined in the same
file. In this case list all function prototypes above the definition of the main func-
tion. Their definitions should follow the main function in the same order that their
prototypes are listed.

e Functions that are called in the main function may be defined in a different file. In
this case list the function prototypes in a header file that is included in the main
function’s file. Their definitions should be included in a separate source file in the
same order as the list of prototypes in the header file.

e In a class definition list all its public members, then all its protected members and
lastly all its private members. List instance variables before methods in each section.

4

e For each class, place the class definition in a header file that is included in the
source file that implements the methods of the class. The implementation should
be presented in the order in which they are listed in the header file.

e Program sections should be listed and grouped in a logical order that will enhance
comprehension.

e The grouping of program sections should maximise cohesion of groups, and minimise
coupling between groups.

e The beginning and end of a program block should fit on one screen. Long code
sections can always be defined in terms of a number of smaller functions. Between
seven and 15 lines of code in a block is a good norm. Do not exceed 30 lines of code
in one block.

L11.4.2 Selection of identifier names

Although the compiler only needs a unique character string to identify an entity, pro-
grammers also rely on their meaning. Identifier names serve the convenience of readers,
and should not serve as a shortcut for the writer.

e Use nouns to name classes and variables.
e Use verbs to name functions and methods.

e Apart from being of the correct word type (noun or verb), it should be reasonably
long and descriptive of its purpose in the program.

e Avoid the use of names that are too general.

e Avoid the use of abbreviations (e.g. calc for calculate). Use dictionary words!.
Exceptions to this rule are using single characters or very cryptic variable names for
loop counters and for the parameters of a constructor, provided that these variables
are used in an accompanying initialiser list.

[P

e Never use the single characters “O”, “0” or “¢” (which normally shows on displays as
“1”), and avoid using them as the last character in an identifier—these two characters
can easily be confused with 0 and 1.

L11.4.3 Commenting practices

Comments are included in code to clarify code and give additional information that cannot
be included in the code. The principle is rather to write self documenting code than to
over comment. It is important to realise that comments cannot rectify bad code. As
Oman and Cook [6] put it “Don’t comment bad code - rewrite it”.

INote that this standard may be violated in handwritten code snippets

Comments are used to enhance the clarity of automatically generated documentation. For
this reason comments that are embedded in the code should follow the syntax specified
by the documentation generator? of your choice.

Avoid redundancy and duplication of what is already clear in the code. This rule is
often violated by programmers who are under the impression that the mere presence
of comments serves a purpose. More often than not extra comments obscures more
than clarifies.

Make sure comments and code agree. Often programmers change code without
updating the accompanying comments. This is unacceptable. Inaccurate comments
are worse than no comments.

Use a formal writing style to state facts in full sentences that are concise and to the
point. Writing concise explanations is often trickier than writing code!

Every file containing code should start with a comment containing the name(s) and
student number(s) of the author(s), the date of last edit as well as the purpose of
the file. Use the proper tags for author and date as specified by the documentation
generator of your choice.

Every function definition should be preceded by comments that briefly describe what
the function does. Bear in mind that the documentation generator of your choice
uses these comments when generating the documentation. Therefore you should use
the proper tags as required by the generator. The best way of specifying what a
function does is to provide the following:

— Give the function’s precondition. Do this by describing each function parame-
ter. For each parameter, indicate any restrictions on the values it may assume
in order to guarantee that the function will work correctly. For example, if an
integer parameter called income is required to be positive for the function to
work properly, this should be stated explicitly

— Similarly, give the function’s postcondition. Do this by describing what the
function will return, or how the function will change the state of the code.

The pre- and postconditions can be seen as a contract between the person who wrote
the function and the person who use the function in a program: if the programmer
that uses the function ensures that the parameters comply with the preconditions,
then the writer of the function guarantees that the function will comply with its
postcondition.

2Javadoc can be used when writing Java code and a package like Doxygen is suitable for C and C++

code

L11.4.4 Control structure style

It is extremely important that other programmers (and yourself after a while) are able
to follow the program flow of your code. To aid in this respect, you will find it useful to
adhere to the following conventions that are aimed at simplicity and clarity of program
flow:

e A function or method should be a pure accessor or a pure mutator. Avoid using
reference parameters in value returning functions/methods.

e Use jump statements responsibly. These are goto, break, continue and return
statements that are intended to short circuit a loop or to leave a function or structure
at a point other than its end. Minimise the use of break statements in loops, and
avoid the use of continue and goto statements altogether. It is preferable to avoid
using return to break out of a loop—rather terminate the loop gracefully (by having
a suitable loop condition) and then return after the loop’s termination.

e Give preference the use of while loops. Use for-loops only when a variable runs
from somewhere to somewhere with some constant increment/decrement.

e Avoid confusing programming tricks [5].

e Avoid deep nesting of loops and conditionals [5].

L11.5 Flexibility

Flexibility standards are guidelines to assist programmers in building adaptable and
portable code. If code is adaptable it can easily be changed and re-used. If code is
portable, it can easily be moved to another platform or environment.

e Avoid the use of “magic numbers”. A magic number is a numeric constant embedded
in code. Rather introduce a named constant. (Recall that named constants should
be in capital letters.) An example of the use of a magic number is when you hard-
code 3.14 where 7 is used in a formula. Rather introduce a named constant (e.g.
PI).

e Write your programs in a modular fashion. Functions should be used to split up
functionality. This splitting should be done in a logical fashion, grouping similar
functionality (that makes sense as a unit) together. Avoid too few, as well as too
many functions.

e Strive to maximise cohesion within a function and minimise coupling between func-
tions.

e Apply the object oriented programming principles such as modularity, encapsulation
and independence.

e Apply the appropriate design patterns wherever possible.

L11.6 Reliability

Code that is written to be flexible is normally also more reliable. This is because when you
enhance flexibility (according to the guidelines below) you also contribute to localisation
— i.e. information relevant to particular parts of the code is close together. As a result, it
becomes easier to isolate possible errors, which in turn renders the code less error prone.
Furthermore, code that adheres to standards that are aimed at eliminating human error
and enhancing usability will contribute to its user-friendliness and will consequently be
more robust and reliable.

L11.6.1 Avoiding logical and runtime errors

The following good habits may lead to code that are less likely to contain logical errors.
It may also contribute to the reduction of common runtime errors such as reference to
uninitialised objects (segmentation faults) and overflow or underflow.

e Make sure that variables are initialised before they are used. Best is to provide
default values upon declaration [4].

e Test your program with data that includes all possible extreme cases as well as all
conceivable user misinterpretation.

e Take compiler warnings seriously [4]. It is important to make sure that before you
dismiss a warning, you understand exactly what it’s trying to tell you.

e For every class with dynamic instance variables explicitly declare a default construc-
tor, copy constructor, assignment operator and destructor.

L11.6.2 Scope and accessibility

Wikipedia [9] describes a side-effect as follows:

a function or expression is said to have a side effect if, in addition to returning
a value, it also modifies some state or has an observable interaction with calling
functions or the outside world.

Side effects are unexpected behaviour originating from unintended changes of the values
of variables in the program. This should be avoided as far as possible.

e All non-final variables (interim values) should be private.

e Keep accessibility as private as possible. Avoid global variables and minimise the
use of static variables.

e All features should be explicitly tagged public, protected or private — avoid using
the default visibility.

e Define each variable just before it is used, rather than defining all variables at the
beginning of a block.

e Avoid having instance variables of a class that could have been defined as non-final
variables within the implementation.

L11.6.3 User orientation

The robustness of a program is dependent on how well the user understands its use. For
this reason one should strive to write user friendly code.

e Introduce the user to the purpose of the program.

Avoid clutter on the screen.

When prompting a user:
— Be as exact and complete as possible with regard to what would be acceptable
input.

— In command line prompts, end the prompt string with a colon and a space and
no new line. The user input should be typed on the same line as the prompt.

When displaying results

— Display the result in a complete, grammatically correct, sentence
— Be as exact and complete as possible with regard to the meaning of the result.

— If applicable include the input values that contributed to the result in the
output.

When displaying an error message

— Be consistent in the appearance of different error message throughout the pro-
gram

— Be as exact and complete as possible with regard to what went wrong. For
example, if a file could not be opened, include the name of the file that could
not be opened in the error message.

L11.7 Efficiency

Efficiency is about writing code that is elegant and at the same time aware of resource
usage. You are advised to read Effective C++ [4] for a comprehensive discussion of specific
ways to improve the effectiveness of your code. Adhering to these guidelines will greatly
improve your code. However, one should be aware that even when following the guidelines
to the letter, it can not guarantee good code. Efficiency is mostly algorithmic based and
is inherently situational. Here we mention only a few very prominent ways to avoid gross
inefficiency.

e Never declare variables that are not used.

e For each variable use the smallest data type that will comfortably hold the expected
extreme values.

e Avoid the need to apply type casting.

e If the same (or very similar) code appears in more than one place in the program,
put it in a function that can be called more than once.

e If a number of consecutive lines of code are the same (or very similar) find a way to
specify the operation performed by the code using a loop structure.

L11.8 Conclusion

The purpose of these coding standars is to introduce students to a representative set
of coding standards that are typical to professional programming practices and to help
students develop the habit of good coding style, which is necessary to successfully complete
large programs.

Complying with given coding standards is a vital professional skill required by the software
industry. The point of the coding standard is to enhance code quality and uniformity.
When complying with such standards code becomes a little easier for everyone to read,
and simpler for other people to analyze, debug, and maintain in general.

Li and Prasad [3] observed that most students believe coding standards are important
in programming courses but tend not to comply with them. We hope that that this
document not only convince students of the benefits of compliance with coding standard
but also to provide guidelines to enhance the quality of the code they write and to inspire
them to strive for excelence.

References

[1] Ambler SW (2000) Writing robust java code, http://www.ambysoft.com/downloads/
javaCodingStandards.pdf. [Online; accessed 2008-03-29].

[2] Horstmann CS (2003) Computing concepts with Java essentials, Hoboken, NJ: Wiley,
3 edn. Appendix Al.

[3] Li X and Prasad C (2005) Effectively Teaching Coding Standards in Programming,
in: Proceedings of the 6th Conference on Information Technology Education, SIGITE
‘05, 239-244, New York, NY, USA: ACM, URL http://0-doi.acm.org.innopac.
up.ac.za/10.1145/1095714.1095770.

[4] Meyers S (2005) Effective C++: 55 specific ways to improve your programs and de-
signs, Upper Saddle River, NJ 074548: Pearson Education Inc, 3" edn.

[5] Oman PW and Cook CR (1990) A taxonomy for programming style, in: CSC ’90:
Proceedings of the 1990 ACM annual conference on Cooperation, 244-250, New York,
NY, USA: ACM.

[6] Oman PW and Cook CR (1990) Typographic style is more than cosmetic, Communi-
cations of the ACM, 33(5):506-520.

[7] Pieterse V (2008) Reflections on coding standards in tertiary Computer Science edu-
cation : festschrift : dedicated to Derrick Kourie, South African Computer Journal,
41:29-37.

10

[8] Sutter H and Alexandrescu A (2004) C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices (C++ in Depth Series), Addison-Wesley Professional.

[9] Wikipedia (2013) Side effect (computer science) — Wikipedia, The Free Encyclopedia.
[Online; accessed 10-February-2013].

11

