
Department of Computer Science
COS121 Lecture Notes: L11

Compile and make
22 August 2014
Copyright c©2014 by Vreda Pieterse. All rights reserved.

Contents

L11.1 Introduction . 2

L11.2 Command line compiling and linking 2
L11.2.1 Compiling a single C++ file . 2
L11.2.2 Header files . 3
L11.2.3 Compiling multiple source files . 5
L11.2.4 Compiling without linking . 5
L11.2.5 Linking compiled code . 5
L11.2.6 Recompiling after a small change . 6
L11.2.7 Compiler flags . 7
L11.2.8 Wild card characters . 8

L11.3 Automating the build process . 8
L11.3.1 Entries in a makefile . 8
L11.3.2 A makefile entry to compile and link a single file 9
L11.3.3 Makefile entries for selective compilation 9
L11.3.4 Using the makefile with make . 10
L11.3.5 Dependency lists . 11
L11.3.6 Continuation line . 12
L11.3.7 Linking order . 12
L11.3.8 Adding custom commands . 13
L11.3.9 Comments . 14

L11.4 Reducing the size of a makefile . 15
L11.4.1 Introduction . 15
L11.4.2 Macros . 15
L11.4.3 Special macros . 16
L11.4.4 Rules . 16

L11.5 A final note . 18
L11.5.1 Common errors . 18
L11.5.2 Survival kit . 18
L11.5.3 Put compiling and makefiles in your pocket 19

1

L11.1 Introduction

Computer science is not just about building computers or writing computer programs. It
covers a wide range of topics which you will encounter while studying computer science.
During your first year of study at UP, you will use the C++ programming language to
experiment with practical applications within these topics. This entails writing, compiling
and running programs written in C++. In the formal curriculum considerable time is
devoted to teaching how to write programs. Writing programs is both an art and a skill.
Here we focus on some of the scaffolding you need to exercise your programming skills.
To become a successful programmer it is extremely important that you compile and run
as many programs as possible. Do not accept what you are told in the textbook without
questioning. Type the examples and compile and run them. Experiment with them by
making small changes and observe if those changes have the impact that you expected.
In this chapter we discuss the practical tricks and tools you need to compile programs.
You need to master these tools to be able to experiment with the examples you have to
study. You will also have to apply these tools when writing your own programs.

The make program was developed to automate some aspects of the compiling process.
This chapter covers the aspects of make that are needed in your first year. It also paves
the way to learning the advanced features of make you might need in your further studies.

Makefiles are data files that can be used by the make program to intelligently compile
and link a system consisting of multiple C++ source files. It is the responsibility of the
designer of the system to specify the detail needed by the make program to successfully
compile and link the system. In order to be able to write your own makefiles, you need to
understand how systems are compiled and linked without the aid of the make program.
This is discussed in Section L11.2. In Section L11.3 we discuss how the make program
automates this process. The content and structure of makefile entries are explained. In
Section L11.4 we discuss how macros and rules can be used to write generic makefile
entries. Understanding this enables you to write compact versatile makefiles that can
easily be adapted to describe other systems. Section L11.5.1 cites common errors that
are made by novices when creating their own makefiles, while Section L11.5.2 provides
a summary that can be used as reference when you have to apply this skill and need
to refresh your memory on how to do it. Finally we conclude with Section L11.5.3 to
introduce a few challenges to students who like to deepen their understanding through
practical experience. The section also provides guidelines on how to further develop your
compiling skills and find out more about how to put the make program into practical use
for a variety of applications.

L11.2 Command line compiling and linking

L11.2.1 Compiling a single C++ file

We assume that you use a text editor such as SciTE to write C++ programs and use
the console terminal program of a Linux operating system to type instructions to compile
and run programs. When writing a C++ program, the source code has to be compiled
before it can be executed. When the code of the whole system is included in a single .cpp

2

file, the process is trivial. You simply have to invoke the GCC compiler with the g++

command and specify the .cpp file name as input file.

If your source code file is named HelloWorld.cpp, you can compile the program with
the following command:

g++ HelloWorld.cpp

This command will create the executable file with the default name (a.out). This program
can then be executed with the following command:

./a.out

Although only a single command is issued to perform the compilation of the program, the
following three steps are automatically executed to obtain the final executable program:

1. Compiler stage: All C++ language code in the .cpp file is converted into a lower-
level language called Assembly language.

2. Assembler stage: The assembly language code made by the previous stage is then
converted into object code which are fragments of code which the computer under-
stands directly. An object code file is normally stored with .o as its file extension.

3. Linker stage: The final stage in compiling a program involves linking the object
code to code libraries which contain certain “built-in” functions. This stage produces
an executable program, which is named a.out by default.

It is possible to specify the output file name by using the -o option followed by the name
of the output file. If your source code file is named HelloWorld.cpp, you can compile
the program with the following command:

g++ HelloWorld.cpp -o HelloWorld.out

This command will create the executable file with the specified name HelloWorld. This
program can then be executed with the following command:

./HelloWorld.out

Note that you can call the executable whatever you want. It need not have the same
name as the .cpp file.

L11.2.2 Header files

When writing code in terms of classes (using the object-oriented programming paradigm),
it is customary to save the code of a given class in two files:

1. Header file: This file commonly contains forward declarations (prototypes / sig-
natures) of classes, member functions, instance variables, and other identifiers. A
header file is normally saved with .h as its file extension.

3

2. Implementation : This file contains the complete definitions of the member func-
tions that are listed in the header file. The implementation file is normally saved
with .cpp as its file extension.

When the code for such a class needs to be compiled, it has to be combined into a
single document before it can be compiled. This is done by using a compiler directive to
insert the header file in the .cpp file before compiling the combined content of the two
files. This is specified by using the #include command at an appropriate position in the
implementation file.

If a header file is named Account.h, it can be included in any .cpp file that uses the
classes, functions or variables declared in the header file by simply adding the following
line of code in the .cpp file:

#include "Account.h"

When a .cpp file is compiled, the code in all the header files inlcuded in it is also com-
piled. If a file named Account.cpp includes the file Account.h with the above compiler
directive, the constructed file that is compiled by the following command consists of the
code contained in both these files:

g++ Account.cpp -o Account.out

Multiple header files can be included in a single .cpp file. A single header file may also
be included in multiple .cpp files.

To avoid multiple declarations when a given header file is included in multiple .cpp files
in the same compilation, it is customary to guard the content of header files as a defined
block (with a unique name). This guard compiles the inclusion only on condition that
the defined block was not previously encountered during the current compilation. The
following illustrates how the content of a header file can be guarded:

#ifndef H_GUARD

#define H_GUARD

/* The forward declarations of classes, functions,
variables, and other identifiers comes here */

#endif

The content of the header file is given a unique name with the command #define H GUARD.
To simplify naming, this name is usually chosen to correlate with the header file name.
The entire content of the header file is placed in a conditional block starting with #ifndef

H GUARD and ending with #endif. This conditional statement specifies that the body of
this statement should only be considered if the given name is not defined. Because the
specified name is defined inside this block, the content of the block will be compiled only
the first time it is encountered during the compilation process.

4

L11.2.3 Compiling multiple source files

When a system becomes larger, it makes sense to divide the source code into separate
easily-manageable .cpp files. Even if a system consists of many files, it can be compiled
issuing a single compile command.

If a system is made up of two .cpp files named Bike.cpp and Tricycle.cpp respectively
and a single common .h file named Wheel.h, then the command to compile all, assuming
Wheel.h is properly included in both .cpp files, is as follows:

g++ Bike.cpp Tricycle.cpp

Note that the first two steps taken in compiling the files are identical to the previous
procedure for a single .cpp file. However, the two compiled files are linked together at the
Linker stage to create one executable program. Because the name of the output file was
not specified, the output file will be named a.out in this case.

L11.2.4 Compiling without linking

The single command that performs the three stages mentioned in Section L11.2.1 to create
the executable program, can be separated into two commands. The one command is is
issued to complete the compiling and assembly stages without performing the linking
stage. The second command is issued to complete the linking stage. The first command
should compile and assemble all .cpp files and store its result (the object code) in .o
files. The second command should link the object code in these .o files to produce the
executable program.

You can use the -c option with g++ to create the corresponding object (.o) file from a
.cpp file. The command to compile both the above-mentioned .cpp files, without linking
them is the following:

g++ -c Bike.cpp Tricycle.cpp

When executing this command, the compiler will stop after the assembler stage. The
object code is written to disk in two .o files corresponding with the .cpp files.

L11.2.5 Linking compiled code

The compiler can use either .cpp or .o files when issued (without the -c option) to create the
required executable file. The following command can thus be issued to link the compiled
code that was created in the previous section:

g++ Bike.o Tricycle.o

If you would like to name the executable file something else than a.out, you can specify it
with the -o option. If you would like to name the executable file of the above-mentioned
system GoRide.out, you can issue the following command:

g++ Bike.o Tricycle.o -o GoRide.out

5

Assume you have written a system consisting of the following files:

C++ file Includes

Bike.cpp Wheel.h, Bike.h
Tricycle.cpp Wheel.h, Tricycle.h
main.cpp Bike.h, Tricycle.h

When issuing the following commands, the intermediate .o files for this system will be
created on disk, whereafter they are linked and a single executable file called GoRide.out1

is created.

g++ -c Bike.cpp Tricycle.cpp main.cpp

g++ Bike.o Tricycle.o main.o -o GoRide.out

L11.2.6 Recompiling after a small change

If you have changed one of the source files in the above-mentioned system it is not necce-
sary to recompile all. Only the files that are changed as a result of changing a source
file need to be recompiled. Considering how the system is designed, you will realise that
Tricycle.o and main.o are not affected by changes in Bike.cpp.

If only Bike.cpp is changed, a complete rebuild of GoRide.out incorporating the change
can thus be achieved by issuing the following commands:

g++ -c Bike.cpp

g++ Bike.o Tricycle.o main.o -o GoRide.out

Similarly, if only Tricycle.h was changed, the rebuild would require the following com-
mands:

g++ -c Tricycle.cpp main.cpp

g++ Bike.o Tricycle.o main.o -o GoRide.out

Here we have shown how we can save compile time in situations where a complete rebuild
is not needed.

We have to admit that in this small system it would not make a big difference if you omit
the creation of one or two .o files. However, when developing very large systems containing
scores, or even hundreds, of files, it often saves a lot of time if only the appropriate files
are updated.

You may realise that this saving of compile time came at the cost of the application of
extra work done by the programmer. The programmer had to issue more commands.
These commands also required some thinking to get them right. In Section L11.3 you will
see how this compile time can be saved without this cost when this work is automated.

1Note that the names given to files are arbitrary and should be chosen to be descriptive of your system

6

L11.2.7 Compiler flags

When compiling you can issue the compile command with options. A host of options,
known as compiler flags, are available for most compilers. They are, however, not stan-
dardised for all compilers. Table 1 lists some useful flags that are available for the GCC
compiler we use.

Table 1: Useful g++ flags

Flag Usage

-o To specify the output filename

-w Disable all warning messages.

Note that use of -w to suppress the compiler warnings is
against our coding standards, because for better reliability
one should take compiler warnings seriously, and not ignore
them as if they don’t exist!

-Wall Enable most compiler warnings

-Werror Treat compiler warnings as errors

Note that the use of this flag really shows that you are
serious about compiler warnings because you actually want
to turn them into errors.

-pedantic Issue all the warnings demanded by ISO C++; reject all
programs that use language extensions supported by the
GCC compiler that is not part of the ISO specification of
the language.

-pedantic-errors Like -pedantic, except that errors are produced rather
than warnings.

-g Turns on debugging. This makes your code ready to run
under gdb.

-O Turns on optimisation. You may also specify the level of
optimisation required, for example -O1 or -O2.

-E Displays the pre-processor output on the screen (stdout).

-static On systems that support dynamic linking, this prevents
dynamic linking with the shared libraries.

-c Compiles the given source down to an object file. This is
used to reduce the compile time of projects that consist of
multiple files.

-MM Displays the makefile dependencies for the given source
file(s) on the screen.

Any number of these flags can be inserted in the compile command. The following com-
mand will compile the HelloWorld.cpp program that was mentioned in Section L11.2.1
to create an executable file called MyWorld. Furthermore, it will treat all warnings as
errors and also include additional debugging information in this executable.

g++ -Werror -g HelloWorld.cpp -o MyWorld.out

7

L11.2.8 Wild card characters

When specifying file names (or paths), the asterisk character (*) can be used as a sub-
stitute for zero or more unspecified characters. Similarly the question mark (?) can be
used as a substitute for one unspecified character. Ranges of characters enclosed in square
brackets ([and]) serve as a substitute for any of the characters in the specified ranges;
for example, [A-Za-z] substitutes any single capitalised or lowercase letter.

The following command is an example that shows how these substitutes can be used to
write more generic commands. This command compiles all the .cpp files in the current
directory that has a lower or uppercase k as the third character in the file name:

g++ ??[kK]*.cpp

By using naming conventions, for example, starting a specific subset of filenames with the
same prefix, can enable you to refer to these files in terms of a wild card pattern.

L11.3 Automating the build process

A program called make can be used to build systems automatically from given source
code. Apart from automating the build process, this program was designed to only rebuild
parts of the system of which the source code has been changed since the last build. The
make program gets the inter-dependency of the source files in the system from a text file
usually called Makefile or makefile. If no path is specified, it is assumed that this file
resides in the same directory as the source files.

The make program checks the modification times of the files, and whenever a file becomes
newer than something that depends on it, it runs the build script accordingly.

L11.3.1 Entries in a makefile

Each entry in the makefile uses the following format:

target: source file(s)
→ command
. . .

The word ‘target’ in this template is the filename of the file which will be created or
updated when any of its source files are modified. The list of source files, represented by
the words ‘source files(s)’ in the template, is also called the dependency list of the entry.
The dependency list is a list of file names separated by spaces. One or more commands
may be listed. The command(s) given in the subsequent line(s) are executed in the given
order. It is assumed that their execution will create the target file. The → in the above
template represent a tab character. Each command must be preceded by →. The
→ is used by make to distinguish between commands and dependency rules.

8

L11.3.2 A makefile entry to compile and link a single file

When the code of a system is located in a single .cpp, technically there is no reason to
automate the process with make and have a makefile to compile it. It can be compiled
using a command line instruction as described in Section L11.2.1. It is, however, advisable
to start using make as early as possible in your C++ programming career. You will have
to start using it sooner or later and will find it easier to use it when it really becomes
necessary if it has been part of the process all along.

A single file can be compiled using a single command line instruction. Consequently a
makefile with single makefile entry is needed to compile the file when using make. In this
case each of the three parts of the entry as described in Section L11.3.1 is trivial:

• The target is the name of the required executable that has to be created.

• The source file is the name of the file containing the source code.

• The command is the command line instruction needed to compile the program.

The makefile to compile the program in the example in Section L11.2.1 — while enabling
most compiler warnings and preventing dynamic linking — consists of the following single
entry:

MyFirstProgram: HelloWorld.cpp
→ g++ -Wall -static HelloWorld.cpp -o MyFirstProgram.out

L11.3.3 Makefile entries for selective compilation

If a system consists of multiple files, the make program should be applied. The input data
to the make program (the makefile) serves a dual purpose. In the first place it specifies
all the commands that need to be executed to build the system and ultimately create its
executable as well as the order in which they should be executed. Secondly, it provides
the information needed to apply selective compilation as described in Section L11.2.6.

When executed, the make program uses the entries in the makefile to determine which
command(s) should be issued to update the system. The commands that are executed
are determined by the files that have changed since the last build. If Bike.cpp, in the
example described in Section L11.2.5, is changed it becomes newer than Bike.o that
depends on it. The make program must then issue a command to create a new Bike.o.

The information about when Bike.o needs to be updated, and what command should be
executed to update Bike.o, are contained in the following makefile entry:

Bike.o: Bike.cpp Bike.h Wheel.h

g++ -c Bike.cpp

Similarly, the files on which GoRide.out depend, and the command to be issued when
any of these files are updated are contained in the following makefile entry:

9

GoRide.out: Bike.o Tricycle.o main.o

g++ Bike.o Tricycle.o main.o -o GoRide.out

The first of the above entries states that whenever Bike.o is older than Bike.cpp, Bike.h
or Wheel.h, the command g++ -c Bike.cpp should be issued. As a result of execution
of this command, Bike.o will become newer than all other files in the system. This will
trigger make to update all targets that are dependent on Bike.o according to the entries
in the makefile. Consequently the command of the second of the two above-mentioned
makefile entries will be executed to create an updated version of GoRide.out.

The following is a complete listing of an example makefile for the above-mentioned system:

GoRide.out: Bike.o Tricycle.o main.o

g++ Bike.o Tricycle.o main.o -o GoRide.out

Bike.o: Bike.cpp Bike.h Wheel.h

g++ -c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h

g++ -c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h

g++ -c main.cpp

Note that the order in which the commands are executed (if executed at all) is not
determined by the order in which they are listed in the makefile. Usually the make

program is invoked to create a single specified target, and the order of the dependency
list of that target determines the order in which the required commands are executed.
When the make program is invoked with the above data to create GoRide.out, it will
start by inspecting the dependency list of GoRide.out. If one or more of the items in this
dependency list of the current target are missing or outdated, it will find the instructions
to build them in subsequent entries and execute them in the order they are mentioned
in the dependency list. It is important that the rule to create any item in any given
dependency list is listed after all its occurrences in dependency lists.

L11.3.4 Using the makefile with make

Once you have created your makefile and your corresponding source files, you are ready
to use make. If you have named your makefile either Makefile or makefile, make will
recognise it and use it if you issue the following command at the command prompt:

make

It is actually required that you specify an entry point in the makefile which is the name
of the target you wish to create. The default entry point is the top entry in the makefile.
Thus you can avoid having to specify the target by making the instructions to create the
final executable the top entry. You can use the make program to create any specific target
by passing the required target as a command line parameter to the make program as the
entry point. Type the following command to create Tricycle.o using the above-mentioned
makefile:

10

make Tricycle.o

You are not required to give your makefile any specific name. You may give it any name
you desire. If you do not use the default name, you have to specify the name of the
makefile by using the -f option when invoking the make program. If you named your
makefile MyMakeData you can specify that the make program must use this file with
the following command:

make -f MyMakeData

L11.3.5 Dependency lists

To create the .o files of a system that contains a large number of files, it is important
to include all the files that each .cpp depends on, in its dependency list. A particular
.cpp file depends on its own .h file as well as all the .h files that are directly or indirectly
included in the .cpp file. If you are given the system that contains the classes shown in
the UML class diagram of Figure 1, and the C++ definition of each of the classes in the
diagram is stored in an .h file with the same name as the class, then the makefile entry
to create Student.o should be:

Student . o : Student . cpp Student . h Borrower . h Loan . h Date . h Book . h
g++ −c Student . cpp

Figure 1: Borrower-Loan Class diagram

The dependency list of a given target is used to specify which files are needed to create
the target. The dependency list is also used to specify the order in which the files should
be considered. For this reason the order in which the files are listed in a dependency list
is important.

It does not make sense to use wild card characters in dependency lists. The order is not
determined if files are specified with wild card characters. Furthermore, the use of wild
card characters is likely to defeat the purpose of the dependency list in terms of selective
compilation because the wild cards might match files that need not be considered, resulting
in some unnecessary compilation.

11

L11.3.6 Continuation line

Sometimes entries in a makefile tend to become very wide and consequently difficult to
read and maintain. You are advised to break long lines into more lines. A backslash (“\”)
at the end of a line indicates that the next line should be interpreted as the continuation
of the current line. The following entry is equivalent to the entry in Section L11.3.5.

Student.o: Student.cpp \

Student.h \

Borrower.h \

Loan.h \

Book.h \

Date.h

g++ -c Student.cpp

It is important that the backslash that indicates that the current line continues on the
next line is followed immediately by a new line. The continuation line may start at the
margin, or may be indented (even with tabs). It is more readable if you use indentation
on continuation lines.

L11.3.7 Linking order

When having to link a number of .o files, it is important to list them in the correct order
for the link command. The link instruction will create them in the order of which they
are listed. As a general rule, if A depends on B, then B should be listed before A. i.e. if
fileA.cpp directly or indirectly includes fileB.h, then fileB.o should appear before
fileA.o in the list of .o files in the link command.

If we assume that a C++ file containing the main function, called LibSys.cpp, use the
classes shown in the UML class diagram of Figure 1, the following makefile entry will link
the .o files to create an executable file called LibSys:

LibSys . out : Book . o Date . o Loan . o Borrower . o Student . o Lecturer . o
g++ Book . o Date . o Loan . o Borrower . o \

Student . o Lecturer . o LibSys . cpp −o LibSys . out

Note that Book.o and Date.o may appear in any order because thy are independent of
any of the files of the system and also independent of one another. They both have to
be listed before Loan.o because Loan.o depends on them. Likewise, Loan.o should be
before Borrower.o, which should in turn be before Student.o and Lecturer.o. The last two
objects are independent of one another and may therefore be listed in any order as long
as they are after all the other files.

Because the order in which files are named in a link command is significant, using wild
card characters in a linking instruction may lead to unwanted results.

12

L11.3.8 Adding custom commands

You can define your own commands that you frequently use in your makefile. Do this by
specifying the command as a target without any dependencies. This is called a pseudo
target. List the command(s) that you would like to execute when you invoke the custom
command below the pseudo target. Precede each command by the usual tab character.

The following shows the format for such custom command:

target:
→ command
→ command
. . .

One of the most common custom commands that are found in makefiles is the clean

command. This command is applied to delete all interim files and other redundant files
from the current directory. It is sometimes useful to force a full compilation with the
next issue of a make command. This may be needed when the system is recompiled on a
different operating system or different version of the operating system.

On linux a file is deleted (removed) with the rm command. The following is a typical
definition of a custom command named clean:

clean:

rm -f *.o *~

This command uses * as a wild card character to specify that all files with .o extension
should be deleted. In the same way *~ indicates that all files with names ending with ~

are also included in the list of files that should be deleted. These are typical automatic
backup files. The -f option supresses the error message that might be generated by the
rm command, for example, when this command is issued while no such file exists.

Custom commands are executed by passing the required command as a command line
parameter to the make program. If you would like to execute the above clean command,
you can type the following command:

make clean

Sometimes when you recompile after a change you may see the message that states that
your target is up to date, while you know it is not. In such a case you can force a full
compilation by issuing the clean command. If you often find that you need to use this
clean command, it is likely that some of your dependencies are not included. If all the file
dependencies are correct in the makefile, it is unlikely that you need to use this command.
You may only need it when you port to another operating system or other version of the
operating system on which the system was previously compiled.

Custom commands are powerful tools. It not only enables you to code some frequently
used actions like removing backups or making tarballs in your makefile, it also enables
you to add additional steps to the compilation process. If you have an application called
dingamaging that takes a .dmg file to generates a .cpp file, the step to generate the
.cpp file can also be included in the makefile.

13

Back to the Bicycle example. Suppose you were using this fictitious application to de-
velop the code. The source code will then be in two files called Bike.dmg Tricycle.dmg

respectively. You will need to apply dingamaging to these files to create Bike.cpp and
Tricycle.cpp. The following is a complete listing of an example makefile for this system
if it were developed with the help of a third party application called dingamaging:

GoRide.out: Bike.o Tricycle.o main.o

g++ Bike.o Tricycle.o main.o -o GoRide.out

Bike.o: Bike.cpp Bike.h Wheel.h

g++ -c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h

g++ -c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h

g++ -c main.cpp

Bike.cpp: Bike.dmg

dingamaging Bike.dmg

Tricycle.cpp: Tricycle.dmg

dingamaging Tricyle.dmg

L11.3.9 Comments

The following listing of our example makefile includes some comments:

Linking the object code of the complete system:
GoRide.out: Bike.o Tricycle.o main.o

g++ Bike.o Tricycle.o main.o -o GoRide.out

Commands for partial compilation of c++ source files:
Bike.o: Bike.cpp Bike.h Wheel.h

g++ -c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h

g++ -c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h

g++ -c main.cpp

Custom command:
clean:

rm -f GoRide.out *.o *~ # deleting executable, .o’s and backups

14

It should be clear that any text preceded by the # character is treated as comments and
ignored by the make program. As shown in the last line of this example, code may appear
on the same line as comments. As with any source, it is good programming practice to
include comments in your makefile to explain the code to readers. You should, however,
avoid redundancy. It is not a good idea to write comments about information that is
already clear in the code.

L11.4 Reducing the size of a makefile

L11.4.1 Introduction

The make program has many features. Two of the powerful features offered are the ability
to define macros and the ability to specify generic rules by using some built-in macros.
These features combined with the use of wild card characters (see Section L11.2.8) enable
the programmer to write more concise makefiles.

L11.4.2 Macros

The make program allows you to use macros, which are similar to variables, to store string
constants that can be substituted anywhere in the makefile. You can define a name for
the list of object files as follows:

OBJECTS = Bike.o Tricycle.o main.o

The make program automatically expand a macro when it runs. Whenever the macro
name appears within round brackets and is preceded by a dollar sign, it will be replaced
by its defined content. The following is a listing of our sample makefile again, using the
above-mentioned macro.

OBJECTS = Bike.o Tricycle.o main.o

Linking the object code of the complete system:
GoRide.out: $(OBJECTS)

g++ $(OBJECTS) -o GoRide.out

Commands for partial compilation of c++ source files:
Bike.o: Bike.cpp Bike.h Wheel.h

g++ -c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h

g++ -c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h

g++ -c main.cpp

15

Note that the name that is given to a macro is chosen, like any other variable name, by
the programmer. You should select macro names carefully. When selecting macro names
you should apply the same rules as you would for variables in your programs. Most
importantly, they should be descriptive of what they represent. Customary to our coding
standards, we treat these macros similar to named constants in C++ programs by using
ALL CAPS when defining them.

L11.4.3 Special macros

In addition to those macros which you can create yourself, there are a few built-in macros
which are used internally by the make program. Some of them are listed below:

CC Contains the current compiler. Defaults to cc
CFLAGS Special options which are added to the built-in compile rule
$@ Full name of the current target.
$? A list of files in the current dependency list, which are outdated.
$< The source file of the current (single) dependency.

L11.4.4 Rules

The real power of makefiles is seen when rules are used. A new wild card character is
introduced. It is the percentage sign (%). The meaning of % is similar to the meaning
of the * wild card character, but not exactly. It behaves differently when expanding.
When * is used in a template, all files that match the *-pattern are included in a single
structure that adheres to the template. On the contrary, when % is used in a template, a
separate structure that adheres to the template is created for each instance that matched
the %-pattern.

The following is an example of a rule that specifies that any .o file in the current folder
depends on its corresponding .cpp file and can be created by compiling the .cpp file with
the -c flag:

%.o: %.cpp

g++ $< -Wall -c -o $@

This compiling is specified to be done with warnings enabled. $< expands to the first
dependency (a .cpp source file). $@ expands to the target (the corresponding .o file). This
single rule can be used instead of a specific rule for each of the object files in the system.

Rules need not be for compiling only. If we have a program called dingamaging that
takes a .dmg file and automatically generates a .cpp file, we can automate the generation
of .cpp files from .dmg files by adding the following rule to the makefile:

%.cpp: %.dmg

dingamaging $< -o $@

16

If we have added the above-mentioned rule to our makefile and have a file named Bike.dmg
in the current folder that is newer than the Bike.cpp file in the folder, then the make

program will generate a new Bike.cpp file, which in turn will trigger the recompilation of
subsequent files depending on Bike.cpp.

In our final version of our example makefile below, we have expanded our use of macros.
We redefine some of the pre-defined macros, for example CC and CFLAGS, to contain
detail specific to our needs. We also define a different flag set to be used when linking with
a macro called LFLAGS. We also include two custom commands that are independent of
any other files (they have no dependency lists). One is to remove redundant files and the
other is to execute the program.

CC = g++

CFLAGS = -Wall -Werror

LFLAGS = -static

TARGET = GoRide.out

OBJECTS = Bike.o Tricycle.o main.o

Linking all the object code:
all: $(OBJECTS)

$(CC) $(LFLAGS) $(OBJECTS) -o $(TARGET)

Dependencies:
Bike.o: Bike.h Wheel.h

Tricycle.o: Tricycle.h Wheel.h

main.o: Bike.h Tricycle.h

Compilation rule:
%.o: %.cpp

$(CC) $< $(CFLAGS) -c -o $@

Custom commands:
clean:

rm -f $(TARGET) $(OBJS) *~ # deleting executable, .o’s and backups

run:

./$(TARGET) # executing the program

The detail needed in the dependency list was reduced by the presence of the compilation
rule. Because the rule specifies that each .o file is dependant on its corresponding .cpp
file, we no longer need to include the .cpp files in the list of dependencies. We only need
to list all the .h files that are directly or indirectly included in each of the .cpp files. The
compilation rule also specifies how the .o files can be created. Therefore, this detail is not
needed where the dependencies are listed. The make program will know when to create a
specific .o file through the dependency list without the command, and will know how to
create it through the specified compilation rule. This generic makefile can now easily be
modified to be applicable to a specific system. One only has to update the dependencies
and macros defined at the beginning of the makefile.

17

L11.5 A final note

L11.5.1 Common errors

Syntax errors

• Failing to put a TAB at the beginning of commands. This causes the commands
not to run.

• To put a TAB at the beginning of a blank line. This causes the make program to
complain that there is a “blank” command.

• Not hitting return just after the backslash, should you choose to use it. If the
character directly before a newline is not the backslash, the text on the next line is
not interpreted as being a continuation of the previous line. It would be the same
as not having the continuation character at all.

Errors in dependency lists

• Not including all dependencies.

To create an .o file by compiling the corresponding .cpp file, the .o file is dependent
on the .cpp file as well as all the header files that are either directly or indirectly
included in the .cpp file.

Mistakes in ordering

• Listing the files in a link command in a wrong order.

If Aaa.cpp directly or indirectly includes Bbb.h, then Bbb.o should appear before
Aaa.o in a compile or link command that includes these .o files in its source file list.

• Having an occurrence of an item after its creation rule.

It is important that the rule to create any item in any given dependency list is listed
after all its occurrences in dependency lists.

L11.5.2 Survival kit

Example makefile for a system consisting of a single cpp file

Type the following makefile instruction in a text editor and save it as a file called makefile

<executable-filename> : <cpp-filename>

→ g++ -static <cpp-filename> -o <executable-filename>

NOTE: The → is the tab character. Example:

Task3: Task3.cpp

→g++ -static Task3.cpp -o Task3

18

Example makefile for a system consisting of multiple files

Create a makefile consisting of n + 1 makefile instructions where n is the number of cpp
files in your system.

For each of the cpp files in your system include a compile instruction in the makefile to
compile it to an object file. This instruction should comply with the following template.
Note that the h-files that should be listed are all the h-files that are directly or indirectly
included in the specific cpp file:

<object-file>: <cpp-file> <h-file1> <h-file2>...<h-filen >
→g++ -c <cpp-file> -o <object-file>

Example:

InternalTools.o: InternalTools.cpp InternalData.h InternalTools.h

→g++ -c InternalTools.cpp -o InternalTools.o

Include a link instruction in the makefile to link all the object files to an executable. This
link instruction should be the first instruction in the makefile, i.e. it should be inserted
at the top. This instruction should comply with the following template:

<executable-file>: <o-file1> <o-file2>...<o-filen >
→g++ -static <o-file1> <o-file2>...<o-filen > -o <executable-file>

It is important to list the o-files in the link instruction in an order that takes the depen-
dency of these files into account. If FileA.cpp is dependent on FileX.h, then FileX.o

should be listed before (to the left of) FileA.o in the link instruction.

Example:

ZombieApocalypse: InternalData.o InternalTools.o Main.o

→g++ -static InternalData.o InternalTools.o Main.o -o ZombieApocalypse

L11.5.3 Put compiling and makefiles in your pocket

The above survival summary will be enough to get you through most of your assignments.
You are, however, strongly advised to work through this entire document and read more
about the GNU compiler and makefiles in manuals and other resources that you can buy
in bookshops or find on the internet. You can access the manuals of the make program
and the GCC compiler by typing the following commands in the console2;

man make

man gcc

2Press Q to quit the manual

19

When studying an example, you should verify that you understand the purpose and
consequence of every command and every line of code. The best way to do this is to
replicate the example in practice. Experiment with the example in Section L11.2.3. This
can be done by creating files named Bike.cpp and Tricycle.cpp as well as an h-file file
named Wheel.h. The h-file should contain the prototypes of a few functions while the
cpp-files should contain the implementations of these functions. Tricycle.cpp should
also contain a main function that calls the functions defined in the .h file. Now you can
see for yourself how this system is compiled with the given command.

You can also deepen your understanding of how makefiles work by applying the knowledge
to other examples and doing more exercises. The following are practical assignments you
can do to convince yourself that you understand the work. These are listed in order of
increasing difficulty.

1. Write and use a custom rule to tar the .cpp, .h files and the makefile of your system.

2. Write and use a custom command that will print all .cpp files that have changed
since the last build.

3. Write and use a makefile that updates a macro called O_FILES by applying a rule to a
macro called SRC_FILES. This rule should set O_FILES to be the same as SRC_FILES
but with all the .cpp suffixes replaced with .o suffixes 3.

4. Write and use a makefile that use a rule to generate the dependency list of the .cpp
files that are listed in the definition of a macro called SRC_FILES. The generated
dependency list must be included in the makefile 4.

If a makefile uses the rule you specified in Exercise 3 it is easy to update the makefile
for a project when you add a new class to your project. When adding its .cpp filename
to the definition of SRC_FILES in the makefile, its object file will automatically be added
to O_FILES. This means that adding a file to your project requires only adding its de-
pendencies and changing one line in your makefile. If the makefile also contain a rule to
dynamically generate the required dependencies — like you have done in Exercise 4 — it
becomes even easier to update the makefile of a system when the files in the system is
changed. It requires editing only one line in your makefile namely the list of .cpp source
files. Adapting this makefile to an entire different project is now as simple as replacing
the definition of SRC_FILES.

Now that you have discovered how make can be applied to automate a wide variety of
tasks, you should be able to use its capabilities to manage the build process of the systems
you may encounter in your future studies and future career successfully.

3You will have to find out about macro modification
4You will have to find out about including files in a makefile

20

	Introduction
	Command line compiling and linking
	Compiling a single C++ file
	Header files
	Compiling multiple source files
	Compiling without linking
	Linking compiled code
	Recompiling after a small change
	Compiler flags
	Wild card characters

	Automating the build process
	Entries in a makefile
	A makefile entry to compile and link a single file
	Makefile entries for selective compilation
	Using the makefile with make
	Dependency lists
	Continuation line
	Linking order
	Adding custom commands
	Comments

	Reducing the size of a makefile
	Introduction
	Macros
	Special macros
	Rules

	A final note
	Common errors
	Survival kit
	Put compiling and makefiles in your pocket

