
Department of Computer Science
COS121 Lecture Notes: L31

Visitor Design Pattern
24 October 2014
Copyright c©2014 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

L31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

L31.2 Programming Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 2
L31.2.1 Single dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
L31.2.2 Double disapatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

L31.3 Visitor Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L31.3.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L31.3.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L31.3.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
L31.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

L31.4 Visitor Pattern Explained . . . . . . . . . . . . . . . . . . . . . . . . 4
L31.4.1 Improvements achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
L31.4.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
L31.4.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
L31.4.4 Related Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

L31.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



L31.1 Introduction

In this lecture you will learn about the Visitor Design Pattern. This pattern separates the
bahaviour of the elements in an aggragate from the state of these elements. This is done
with the intention to simplify the maintainance when the behaviour of these elements
have to be changed or extended. This is done with extreme elegance. When implemented
correctly neither the elements of the aggregate nor the clients using the aggregate need to
be recompiled when new functions are added to the system. Unfortunately the application
of this pattern complicates the maintainance of the aggragate itself. It is difficult to add
classes to the aggragte. Thus, this pattern is more applicable in a system with changing
processing needs and a stable internal structure of elements. I.e. a system where you will
seldom add new classes but have the need to often add new functions to some derived
classed in an aggregate and consequently new virtual functions to exsiting interfaces to
the aggregates.

L31.2 Programming Preliminaries

L31.2.1 Single dispatch

With the exception of the Vistor design pattern, all the design patterns that uses dele-
gateion as their strategy, the concrete function that is called from a function call in the
code depends on the dynamic type of a single object and therefore they are known as
single dispatch calls, or simply virtual function calls.

Single dispatch is a natural result of function overloading. Function overloading allows
the function called to depend on the type of the argument. Function overloading however
is done at compile time where the compiler creates code for each overloaded version of the
function. Consequently there is no runtime overhead because there is no name collision.
Calling an overloaded function goes through at most one virtual table just like any other
function.

L31.2.2 Double disapatch

In the Visitor design pattern the mechanism that dispatches a function call to different
concrete functions depends on the runtime types of two objects that are involved in the
call. This mechanism is known as double dispatch.

When double dispatch is applied two overloaded functions are involved in the process
to execute the correct concrete function. Assume there are two class hierachies re-
spectively with abstract classes called HierarchyA and HierarchyB. Further assume
that functionA(:HierarcyB) and functionB(:HierarchyA) are virtual functions re-
spectively defined in HierarchyA and HierarchyB. A double dispatch call to a concrete
class derived from HierarchyB involves calling functionB(:HierarchyA) and passing a
pointer to a concrete class dervied from HierarchyA via the parameter. This will result
in the execution of the correct concrete implementation of functionB(:HierchyA). The
next step in the double dispatch process will now use the parameter that was passed to
functionB(:HiercahyA) to call back. i.e. if objectA : HierrachyA is the argument

2



that was passed to functionB(:HierchyA), the body of functionB(:HierchyA) will in-
clude a a statement like objectA->functionA(objectB). This call will in turn use the
type of its argument to determine the correct concrete implementation of functionA(:HierarchyB)
to be executed.

L31.3 Visitor Design Pattern

L31.3.1 Identification

Name Classification Strategy
Visitor Behavioural Delegation
Intent

Represent an operation to be performed on the elements of an object struc-
ture. Visitor lets you define a new operation without changing the classes of
the elements on which it operates. ([2]:331)

L31.3.2 Structure

Figure 1: The structure of the Visitor Design Pattern

L31.3.3 Problem

Many distinct and unrelated operations need to be performed on node objects in a aggre-
gate structure that may be heterogenious. You want to avoid “polluting” the node classes
with these operations. And, you don’t want to have to query the type of each node and
cast the pointer to the correct type before performing the desired operation [3].

3



L31.3.4 Participants

Visitor

• Each class of ConcreteElement has a visit() operation declared for it.

• The operation’s signature identifies the class that sends the visit() request
to the visitor.

• The particular class is then accessed through the interface defined for it.

ConcreteVisitor

• Implements the operations defined by visitor.

• May store information about objects that are visited.

Element

• Defines an accept() operation that takes an object of Visitor as a parameter.

ConcreteElement

• Implements the accept() operation that takes an object of Visitor as a pa-
rameter.

ObjectStructure

• Has a highlevel interface that allows the Visitor access and traverse its elements.

• This structure may be a Composite or a collection such as an array, list or a
set.

L31.4 Visitor Pattern Explained

L31.4.1 Improvements achieved

• The operations of a conceptual operation is kept together rather than being scat-
tered in different clases in an aggregate. Thus cohesion is increased because related
operations are logically grouped in different visitors.

• The different players are independent. This independence reduces coupling [1]

• Aside from potentially improving separation of concerns, the visitor pattern has an
additional advantage over simply calling a polymorphic method: a visitor object
can have state. This is extremely useful in many cases where the action performed
on the object depends on previous such actions [5].

4



L31.4.2 Disadvantages

• It is difficult to change the aggregate. When classes in the aggregate are changed
all vistors need to be changed. This is the case even when the changes are part of
the aggregate which is of no particular interest to the visitor [4].

• The encapsulation of the concrete elements is diminished to allow the visitors to
perform their operations [2].

• Owing to double dispatch (i.e. twofold redirection), the application of the Vistor
pattern may introduce a significant performance penalty. One might say that this
is the price of complete flexibility (which may or may not be worth paying).

L31.4.3 Implementation Issues

The Object stucture is dependant on the Visitor to compile as it has visitors as parameters
to its accept() methods. The Visitor in turn is also dependant on the Concrete Elements
in the Object structure to compile for the same reason. This is called a cyclic dependancy.
Fortunately they depend only on the names of the classes. Therefore, the problem can
be avoided by including a forward declaration of the Visitor class in the Object structure
and first compiling the Object structure or vice versa.

Note that it is required that the Visitor participant defines a separate visit() function for
each of the concrete element types in the aggregate. This function also takes a parameter
of the type of this concrete element. Owing to C++ overloading, these functions may
all have the same name and can be distiguished by their differing parameter types. It is,
however, important to note that the accept() methods in the elements still need to be
implemented in the concrete classes despite the fact that they seem to be identical. If you
would implement it in the interface, the static type *this would be the base class which
would not provide the compiler with the needed type information.

L31.4.4 Related Patterns

Composite
The Coposite is supportive to the Visitor. Visitors can apply an operation over an
object structure defined by the Composite pattern.

Iterator
Iterator and Visitor has similar intents. Visitor, however, is more general than
Iterator. ’n Iterator is restricted to operations on elements of the same kind while
Visitor can operate on elements of different types.

Interpreter
The Visitor pattern may be applied to do the interpretation.

Abstract Factory
Abstract Factory and Visitor has similar structure. Abstract factory applies the
structure to create families of objects while Vistor applies this structure to perform
a group of related operations.

5



Bridge
Both Bridge and Visitor separates state and behaviour of objects. Bridge applies
single dispatch while Vistor applies double dispatch.

L31.5 Example

Figure 2: Class Diagram of a system illustrating the implementation of the Visitor design
pattern

Figure 2 is a class diagram of an application that implements the visitor design pattern. It
illustrates an implementation of the Visitor design pattern by showing that a Campaigner
might have different actions to take while visiting different kinds of voters. In this system
it will not be easy to change the structure of the Resident class hierarchy but it will be
very easy to change the behaviour of the Campaigner or add a different kind of visitor
without having to change any code in the Resident class hierarchy.

Participant Entity in application
Visitor Caller
Concrete Visitor Campaigner
Element Resident
Concrete Elements HighIncome, LowIncome, MediumIncome
ObjectStructure Not implemented

visitConcreteElement() visit()
accept() accept()
Client main()
operation() incomegroup()

6



Visitor

• The Caller class act as the visitor.

• The definition of the visit() method is overloaded to provide the functionality
to visit the designated concrete elements (HighIncome, MediumIncome and
LowIncome)

Concrete Visitor

• The Campaigner class acts as a concrete visitor.

• All variations of the visit() method can be implemented. It is possible to
implement empty methods or rely on default implementations of thevisit()
function in cases where a visitor should not visit certain elements.

• It is easy to alter/add/remove concrete visitors from the system with no need
to recompile the client or any of the elements in the object structure.

Element

• The Resident class acts as the element.

• The definition of the accept() method is polymorphic and allows for different
implementations in HighIncome, MediumIncome and LowIncome.

• The incomegroup() method represent methods that are defined in the Element
participant of the Vistor pattern. This method is typically called in the body
of the visit() method that is implemented in the concrete visitors.

Concrete Element

• The LowIncome, MediumIncome and HighIncome classes act as the concrete
elements.

• The implementtion of their respective accept() methods is the second dispatch
of the application of double dispatch. It calls the visit() method of the
Caller it received as parameter. The implementation of this method that
should appear in each concrete Resident is shown below.

• The incomegroup() method represent methods that are defined in the Element
participant of the Vistor pattern. This method is typically called in the body
of the visit() method that is implemented in the concrete visitors.

The following code is the implementation of the accept() method that should appear in
each concrete resident.

void accept ( C a l l e r& v ) {
v . v i s i t ( this ) ;

}

Although the code is identical in each of these classes they are differnt from a compiler
poit of view because the parameter that is passed in its parameter is of a different type
in each of these cases.

In a typical execution the client calls the accept()-method of a concrete Resident and
passes a pointer to a specific Caller as parameter. The accept()-method will then call

7



the visit()-method of the concrete Caller that was passed as parameter and passes a
pointer to itself to this Caller. Lastly the visit()-method will call back to the concrete
Resident by executing (in this case) its incomegroup()-method.

References

[1] Judith Bishop. C# 3.0 design patterns. O’Reilly, Farnham, 2008.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1994.

[3] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

[4] Jens. Palsberg and C. Barry Jay. The essence of the visitor pattern. In Computer Soft-
ware and Applications Conference, 1998. COMPSAC ’98. Proceedings. The Twenty-
Second Annual International, pages 9 –15, aug 1998.

[5] Wikipedia. Visitor pattern — wikipedia, the free encyclopedia, 2012. URL
\url{http://en.wikipedia.org/w/index.php?title=Visitor_pattern&oldid=

516592783}. [Online; accessed 21-October-2012].

8


