Department of Computer Science

UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L32 UNIVERSITY OF PRETORIA
Proxy Design Pattern Que® YUNIBESITHI YA PRETORIA

27 and 28 October 2014

Copyright (©2013 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
L32.1 Introduction
L32.2 Programming Preliminaries

L32.3 Proxy Design Pattern
L32.3.1 Identification e
L32.3.2 Problem
L32.3.3 Structure
L32.3.4 Participants

L32.4 Proxy Pattern Explained
L32.4.1 Related Patterns

L32.5 Example.
L32.5.1 Message Server Example - Version 1
L32.5.2 Message Server Example - Version 2

References s,

L32.1 Introduction

This lecture note introduces the Proxy design pattern. One of the most prevalent im-
plementations of the proxy pattern in C++ is in the implementation of smart pointers.
Therefore an overview of smart pointers is presented in the programming preliminaries
section before introducing the pattern. Other than using the proxy to implement smart
pointers, three other implementation strategies are presented.

L32.2 Programming Preliminaries

One of the uses of the Proxy design pattern is to manage smart references. In C++4 there
has been the notion of a Smart Pointer. As from C+-+11 this notion has been refined.

A C++ smart pointer is an abstract data type that simulates a pointer while providing
additional features intended to reduce bugs caused by the misuse of pointers while re-
taining efficiency [2]. Smart pointers are used to keep track of the objects they point to
for the purpose of memory management. This includes bounds checking and automatic
garbage collection.

Many libraries exist that implement a type of smart pointer. The library under consid-
eration in this section is the STL for C++11. The standard for C++11 was accepted in
August 2011 and is being implemented in C++ compilers. In this standard, there are 3
kinds of smart pointers, unique_ptr, share ptr and weak ptr. unique ptr can be re-
placed with auto_ptr as defined in the C++ standard prior to C++11. As with auto_ptr,
it is defined in the header <memory>. The latter two are based on the implementation of
smart pointers in the Boost library.

auto_ptr - auto_ptr is not implemented in C++11. It is however discussed here for the
sake of completeness. Up till C++11 it was the only smart pointer implementation
available in C++4. In the way auto_ptr is implemented, the copy constructor and
assignment operators do not copy the stored pointer. They copy the pointer, leaving
the copied or assigned object empty. This strategy effectively transfers ownership
of the pointer. It however does not provide a solution when copy semantics are
required.

auto_ptr<int> value (new int (10));

cout<<value.get()<<endl; // access to the pointer
cout <<xvalue<<endl; // access to the walue of the pointer

unique_ptr - unique ownership, move constructible and move assignable. Changing the
example given for auto_ptr can be adapted to make use of C++11 unique ptr by
replacing all references to auto_ptr with references to unique_ptr. Note, it may
be necessary when compiling and linking to inform the compiler that C++11 is
required by specifying the correct flags for your compiler if it supports the C4++11
standard.

unique_ptr<int> value(new int (10));

cout<<value.get()<<endl; // access to the pointer
cout <<xvalue<<endl; // access to the wvalue of the pointer

unique_ptr<int> newValue = move(value); // Transfer ownership

newValue.reset () // deletes the memory
value.reset () // nothing to delete

shared _ptr - counted pointer, object is deleted when the use count goes to zero

shared_ptr<int> value(new int (10));
shared _ptr<int> newValue = value;
//newValue and value both own the memory

cout<<value.get()<<endl; // access to the pointer
cout <<xvalue<<endl; // access to the wvalue of the pointer

value.reset (); // memory still exists because of dual ownership
newValue.reset (); //last to own the memory, deletes the memory

weak_ptr - robust unowned pointer which is managed by a shared pointer

shared_ptr<int> value (new int (10));
weak_ptr<int> newValue = value; //value owns the memory
// newValue holds a reference

L32.3 Proxy Design Pattern

L32.3.1 Identification

Name Classification Strategy
Proxy Structural Delegation
Intent

Provide a surrogate or placeholder for another object to control access to it.

([1]:207)

L32.3.2 Problem

The proxy holds off using and therefore possibly also creating the real subject until it
is necessary. This means that the cost of accessing the real subject is deferred. The
availability of the real subject is therefore on demand. This means that the proxy can
be seen as a replacement object where there is a requirement for a more sophisticated
reference to an object than just a pointer.

L.32.3.3 Structure

The structure of the Proxy design pattern is given in Figure 1.

3

f Pretoria) Sun‘:gfer:!
Client +request()
——————————— >
iy Ay
RealSubject Proaxy
+request() -realSubject : RealSubject*
realSubject |+ request() 0

void request() {
realSubject-=request(); -

}...

Figure 1: The structure of the Proxy Design Pattern

L32.3.4 Participants

Subject

e Defines the common interface for RealSubject and Proxy so that a Proxy can
be used anywhere a RealSubject is expected.

RealSubject
e Defines the real object that is represented by the proxy.
Proxy

e serves as substitute for the real subject

e maintains a reference to the real subject

e controls access to the real subject

e may be responsible for creating and deleting the real subject

e more responsibilities specific to its kind

L32.4 Proxy Pattern Explained

The proxy pattern may be applied to a number of situations. The most common situations
where a proxy may be applied are given below.

Remote proxy: The remote proxy provides a local representation of an object in a
different address space. It therefor is used to hide the fact the the object may be
on a different computer. The remote proxy is responsible for:

e cncoding a request and its arguments; and

4

e sending the encoded request to the real subject in a different address space.

Virtual proxy: The virtual proxy provides a local placeholder for an object that is
expensive to create and maintain. It is used to postpone access to the expensive
object until it is really needed. The virtual proxy is responsible for:

e creating expensive objects on demand; and

e caching information about the real subject so that access to it can be avoided
if possible.

Protection proxy: The protection proxy controls access to the real object. It is used to
control access rights to the real subject. Different users/objects may have different
access rights. The protection proxy checks the access rights of a user/object for the
particular request being issued. It may perform additional housekeeping tasks when
the object is accessed.

Smart reference: When a proxy is implemented as a smart reference, it replaces a bare
pointer and performs additional actions when the object is accessed. The typical
uses of a smart pointer are:

Memory management - count the number of references to the real object
Load on demand - load a persistent object into memory on first reference

Safe updating - lock the real object before it is accessed

L.32.4.1 Related Patterns

Adapter
Adapter and Proxy both provide an interface to access another object. However,
the reasons for doing this are different. Adapter a different interface to the object
it adapts. Proxy provides the same, or diminished interface to its subject.

Decorator

Decorator and Proxy both describe how to provide a level of indirection to an object
and forward requests to it. However, they have a different purpose. Decorator pro-
vides a dynamic attach or detachment of an object through recursive composition.
The component provides only part of the functionality. One or more decorators
provide furnish the rest. Proxy provides a stand-in win it is inconvenient of unde-
sirable to access the subject directly. With the proxy, the subject provides the key
functionality. The proxy provides (or refuses) access to this functionality.

Prototype
Prototype and Proxy both offer a solution to a problem related to an object that is
expensive to create. However, the solutions are different. Prototype keeps a copy of
the object handy and clones it on demand. Proxy creates a stub for the object and
created it on demand.

Flyweight
Flyweight and Proxy both apply a smart reference to manage access to an object.
However, the purpose of the reference is quite different. Flyweight controls multiple
pointers to a shared instance. It can be related back to a C++11 share_ptr. A proxy
controls single access to a specific object. This relates to a C++11 unique_ptr.

L32.5 Example

One example is presented in two versions. Additional suggestion for other versions of the
application of the proxy design pattern is also given after the code for version 2 has been
given.

L32.5.1 Message Server Example - Version 1

The following code implements a message server. The message server is seen as the
RealSubject participant. A proxy participant takes the messages from the client and
passes them on to the actual message server. In this example, each proxy message server
links to its own actual message server.

// Subject

class MessageServer {

public:
virtual void connect() = 0;
virtual bool message(string) = 0;
virtual void disconnect () = 0;
virtual “MessageServer () {}

}s

//RealSubject
class ActualMessageServer : public MessageServer {
public:
ActualMessageServer () {
messages = 0;
}

void connect () {
cout << ”Connected ...” << endl;
}

bool message(string msg) {
cout << ”"Message.is.” << msg << endl; messages++;
return true;
}
void disconnect () {
cout << " Disconnected ,_.” << messages
<< 7._message(s)_have_been_received.” << endl;

2

}

private:
int messages;
}s

//Prozy
class ProxyMessageServer : public MessageServer {

ActualMessageServerx implementation
bool connected;
public:

ProxyMessageServer () {
implementation = new ActualMessageServer ();
connected = false;

}

“ProxyMessageServer () {
delete implementation;

}

void connect () {
if (!connected) {
implementation—>connect ();
connected = true;
}
}
bool message(string msg) {

if (connected)
return implementation—>message (msg);

}

void disconnect () {
if (connected) {
implementation—>disconnect ();
connected = false;

}s

L32.5.2 Message Server Example - Version 2

This example adapts the implementation given in Version 1 so that there is only one
message server, rather than one per proxy. It will require the proxy to ‘register’ with
the message server when it is ready. This ‘registration’ can be simulated by sending the
actual message server object through to the Proxy. It will also mean that the proxy may
no longer delete the actual message server. An alternative implementation to using a
pointer to the actual message server would be to:

e make use of a shared pointer; or

e make the actual message server a Singleton.

Figure 2 provides a possible solution to the description given above.

An example of how the proxy can be implemented to achieve the requirements for the
example in version 2 is given in the following listing.

class ProxyMessageServer : public MessageServer {
ActualMessageServerx implementation
bool connected;
bool registered;

MessageServer
+connect{)
+message(}
+discanne iy}
+~MessageServer()

|

Proxy Mess ageServer
-impl ation : Act geserver®
ActualMessageServer -connected : bool

-messages :int -registered : bool
+ActualMessageServer() -implementation +ProxyMessageServer()
+connect() +registerMessageServer()
+message() e e e e - - +~ProxyMessageServer()
+disconnect() e e “+connect()

+message()

+disconne cti)

Figure 2: Proxy message server example 2

public:

ProxyMessageServer () {
registered = false;
}

void registerMessageServer (ActualMessageServer* ms) {
implementation = ms;
registered = true;
connected = false;

}

“ProxyMessageServer () {
}
void connect () {
if (registered && !connected) {
implementation—>connect ();
connected = true;
}
}
bool message(string msg) {

if (registered && connected)
return implementation—>message (msg);

void disconnect () {
if (registered && connected) {
implementation—>disconnect ();
connected = false;

References

[1] Gamma E, Helm R, Johnson R, and Vlissides J (1994) Design patterns : elements of
reusable object-oriented software. Reading, Mass: Addison-Wesley.

[2] Wikipedia (2013). Smart pointer — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/wiki/Smart_pointer. [Online; accessed 14-October-2013].

