Department of Computer Science - COS 121 September 2012

Iterator Design Pattern
COS 121 — Christoph Stallmann

Introduction

* To iterate means to repeat.

* Implemented as:

* Recursion

* Loop structures: for and while loops

* Aclass that supports iterations is called
an iterator.

Christoph Stallmann - University of Pretoria 1

Department of Computer Science - COS 121 September 2012

Reason

* Improve efficiency when accessing
subscripts sequentially.

 Easier interface to access elements.

» Different Iterators might access
elements differently.

» Separation of concerns:
* One class is responsible for storing

objects.
* Another class is responsible for
accessing them. -
]
Structure
Iterator
Aggregate Client
Hfirst()
+createlterator() : Iterator® :;;?;28 0
+currentitem(}

T

Concretelterator

ConcreteAggregate

H+first()
—————— Hnext()
H+isDone()
+currentltem()

+createlterator() : Iterator*

A

8

Christoph Stallmann - University of Pretoria 2

Department of Computer Science - COS 121 September 2012

Participants - Aggregate

* Often abstract.

» Defines the interface for creating an
Iterator object.

Aggregate

+createlterator() : Iterator*

Participants - Concrete Aggregate
» Implements the interface of the

Aggregate.

» Returns an object of the corresponding
Concrete Iterator.

ConcreteAggregate

+ereatelterator() : Iterator* return new Concretelterator(this); ﬁ

Christoph Stallmann - University of Pretoria 3

Department of Computer Science - COS 121 September 2012

Participants - Iterator

* Often abstract.

» Defines an interface for accessing and
traversing elements.

Iterator

+first()

+next()
+isDone()
+currentitem()

Participants - Concrete Iterator

* Implements the interface of the Iterator.

» Keeps track of the current position in
the traversal of the Concrete Aggregate.

Concretelterator

+first()

+next()
+isDone()
+currentlitem()

Christoph Stallmann - University of Pretoria

Department of Computer Science - COS 121

Christoph Stallmann - University of Pretoria

The Process

* |nitial state.

Collection

The Process

» Create an lterator.

createlterator()

Collection

September 2012

Department of Computer Science - COS 121 September 2012

The Process
» Starting at the first element.

first()

Collection

The Process
« Starting at the first element.

next()

Collection

Christoph Stallmann - University of Pretoria 6

Department of Computer Science - COS 121 September 2012

The Process
» Starting at the first element.

next()

Collection

The Process
« Starting at the first element.

next()

Collection

Christoph Stallmann - University of Pretoria 7

Department of Computer Science - COS 121 September 2012

The Process
» Starting at the first element.

next()

Collection

The Process
« Starting at the first element.

next()

Collection

Christoph Stallmann - University of Pretoria 8

Department of Computer Science - COS 121 September 2012

The Iterator in C++

* STL in C++ has the following iterators:
* Bidirectional Iterator
* Forward Iterator
* Input Iterator
* Output Iterator
* Random Access lterator

» \ectors, lists, stacks and maps in C++
make use of iterators.

The Iterator in C++

vector<int> myvector;
for(inti = 0; i < 5; ++i)
myvector.push_back(i);

vector<int>::iterator myiterator,;
for(myiterator = myvector.begin();
myiterator < myvector.end();
++ myiterator)
cout << *myiterator;

Christoph Stallmann - University of Pretoria 9

Department of Computer Science - COS 121 September 2012

The Iterator in C++

STL in C++ has the following iterators:
* Bidirectional Iterator

* Forward Iterator

* Input Iterator

« Output Iterator

* Random Access lterator

Vectors in C++ make use of iterators.

The lterator in Qt

Implemented in various places:
* QVector

* QList

B OSet

* QMap

* QStringList

* QLinkList

* Many more ...

Christoph Stallmann - University of Pretoria 10

Department of Computer Science - COS 121 September 2012

Example - Video

B hittp://youtu.be/nuS591k75NY

Example - Layout

WeaponlList

Christoph Stallmann - University of Pretoria 11

http://youtu.be/nuS591k75NY
http://youtu.be/nuS591k75NY

Department of Computer Science - COS 121 September 2012

MaxSize : int Iterator
Vall : string*®
= gt string Client (Main)
+iterator() : Iterator®
A A first()
tsize() : int next()
tisEmpty() : bool
'S . V()_ . L+isDone() : bool
-add(: string) N £) : stri
+operator([](: int) : string current() : string
#hasPlace() : bool ZI3
#increaseSize()
43 Weaponlterator
-mCurrent : int
WeaponlList -mList : WeaponList*
H+Weaponlterator(: WeaponList*)
[+iterator() : Iterator* | __ . __ __ >+ﬁm0
+add(: string) next()
HisDone() : bool
lrcurrent() : string

Example - Code

Christoph Stallmann - University of Pretoria 12

Department of Computer Science - COS 121 September 2012

Example - Output

visore@ubuntu: ~/Desktop/iterator
File Edit View Search Terminal Help
visore@ubuntu:~/Desktop/IteratorS ./GamePatterns

e e e e s ok ke ok ok ok ok ek o ok ok ok ok ok ok ok ok ke

Game Patterns
Iterator

University of Pretoria B
C0s121 - 2012 D
e e ok ok ok ok ok ok ok ok

Hidden Blade added to the weapon list.
Crossbow added to the weapon list.
Sword added to the weapon list.

cted weapon: Hidden Blade
S cted weapon: Crossbow
Selected weapon: Sword

visore@ubuntu:~/Desktop/Iterators I

Improvements Achieved

* lterators simplify the aggregate
interface.

» |terators contribute to the flexibility of
your code.

» [Easy to change the iterator if the
container changes.
* |terators contribute to the reuse of your
code.
» Same iterator for different containers.

» Easy to iterate differently through the
same structure.

* Execute simultaneous yet independent ,

iterations.
Qe

Christoph Stallmann - University of Pretoria 13

Department of Computer Science - COS 121 September 2012

Problems

» Complicated to synchronize an
Aggregate with its Iterator.

» Depending on the implementations,
iterators might be slower than direct
subscript access.

Different Implementations

* The Iterator implementation might differ
considerably:

* Some might be optimized for
sequential access.

* Other might be optimized for random
access.

Christoph Stallmann - University of Pretoria 14

Department of Computer Science - COS 121

Implementation Issues

* Copy the Aggregate

» Storing the state

» Pointer to the Aggregate
* Pimpl principle.

Issues - Copy the Aggregate

* Make a copy of the Aggregate inside the
Iterator.

* Most robust solution.
« Execution-wise the most efficient.
* Memory-wise the least efficient.

* Doesn't reflect changes to the
Aggregate.

Christoph Stallmann - University of Pretoria

September 2012

Department of Computer Science - COS 121 September 2012

Issues - Storing the State

* Create an object storing the state of the
Aggregate inside the Iterator.

» Storing a Memento.

* Robust solution.

* More efficient than copying.
» Difficult to implement.

* Doesn't reflect changes to the
Aggregate.

Issues - Pointer to Aggregate

» Keep a pointer to the Aggregate inside
the Iterator and use call backs to access
the Aggregate.

* Not that robust.
* Memory-wise very efficient.

* Prone to synchronization errors if the
Iterator wasn’t implemented properly.

* Compromises encapsulation.
» Reflects changes to the Aggregate.

A

8

Christoph Stallmann - University of Pretoria 16

Department of Computer Science - COS 121 September 2012

Issues - Pimpl Principle

* The Pimpl Princple.

* Memory-wise most efficient.

* Execution-wise most efficient.

» Beyond the scope of the module.

Additional Functionality

* The lterator can have additional
functionality, such as:

* Remove
* Previous
« Last

« SkipTo

Christoph Stallmann - University of Pretoria 17

Department of Computer Science - COS 121 September 2012

Internal vs External

 External lterators:

 The client calls the functions on the
Iterator.

* |nternal Iterators:
* |terators controls itself.
* Less flexible.

Related Patterns

Factory Method

* Both use a subclass to decide which
object to create.

Memento

* An lterator can use a Memento to
capture the state of the Aggregate.

Adapter

* Both provide an interface through
which operations are performed.

Composite

* Recursive structures such as a

Composite usually need iterators to g
traverse sequentially. ﬁ
A 4

Christoph Stallmann - University of Pretoria 18

Department of Computer Science - COS 121 September 2012

Iterator Designh Pattern
COS 121 — Christoph Stallmann

Christoph Stallmann - University of Pretoria 19

