
Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 1

COS 121 – Christoph Stallmann
1

• Connect multiple objects to one subject.

• If the subject changes:

• All connected objects are notified.

• Depending on the subject’s change,

the objects will update accordingly.

2

Subject

Connected
Object

Connected
Object

Connected
Object

Connected
Object

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 2

• When a change in one object effects

other objects.

• When you are unsure on how many

objects will be connected to another

object during runtime.

• When the event and response should

be encapsulated in different objects.

• When multiple object communication is

too tightly coupled.

3

4

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 3

• May be abstract.

• Defines the interface of objects that may

observe the subject.

• Provides the means by which the

observers are notified when the subject

changes.

5

• May be abstract.

• Defines the interface by which

observers can attach to and detach

from the subject.

• Updates the observers when notified.

6

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 4

• Implementation of the subject being

observed.

• Keeps track and provides functionality

to access the internal state.

7

• Maintains a reference to the subject it

observes.

• Updates and stores state information.

• Maintains consistency with the subject’s

state.

8

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 5

• Initial state.

9

Subject

Observer 1

Observer 2

Observer 3

Observer 4

• Attach observers to the subject.

10

Subject Observer 2

Observer 3

Observer 4

Observer 1

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 6

• Observers are now connected to the

subject.

11

Subject Observer 2

Observer 3

Observer 4

Observer 1

• Somewhere along the line the subject

changes.

12

Subject Observer 2

Observer 3

Observer 4

Observer 1

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 7

• The subject notifies all the observers

connected to it.

13

Subject Observer 2

Observer 3

Observer 4

Observer 1

• The observers determine the state of

the subject.

14

Subject Observer 2

Observer 3

Observer 4

Observer 1

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 8

• The observers handle the change in the

subject accordingly.

15

Subject Observer 2

Observer 3

Observer 4

Observer 1

• The observers can also be detached as

needed.

16

Subject Observer 2

Observer 3

Observer 4

Observer 1

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 9

• Implemented as Signals and Slots in Qt.

• Multiple Slots can be connected to one

Signal.

• If Signal is “emitted”, all Slots are

notified.

17

• Attach an observer:

 QObject::connect(button, SIGNAL(clicked()),

 this, SLOT(doAction()));

• Detach an observer:

 QObject::disconnect(button, SIGNAL(clicked()),

 this, SLOT(doAction()));

• If the button is clicked, doAction() will be

executed.
18

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 10

• http://youtu.be/HoA4LZ7a-OI

19

20

Environment

Area 1

Area 2

Area 3

Area 4

http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 11

21

22

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 12

23

• Separation of concerns:

• Observers are not embedded into a

subject.

• Observers can register and

deregister as required.

• The state change and the event

action are encapsulated.

• Elimination of “busy wait”:

• Instead of continuously checking if

the state changed, observers are

notified.

• More efficient.

24

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 13

• When implementing the Observer, the

following has to be considered:

• How do we detach and manage the

Observers?

• How is the state transferred from the

subject to the Observer?

25

• When the Observer goes out of scope it

must detach from the Subject.

• Can be done manually.

• Or detach the Observer in it’s

destructor.

• If the Concrete Observers are

further extended, make sure the

parent destructor is declared

virtual.

• Ensures that the subclass

destructor is called first when

using polymorphism.

26

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 14

• The Concrete Subject has a state.

• This state has to be synchronized with

the Concrete Observer.

• Two models to do this:

• Pull model

• Push model

27

• The Concrete Observer retrieves (pulls)

the state from the Concrete Subject.

• Typically the Concrete Observer

retrieves the state by calling a getState

function on the Concrete Subject.

 28

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 15

• The Subject sends (pushes) the state to

the Observer.

• Typically the Subject transmits the state

as a parameter of the Observer’s

update function.

 29

• The Observer pattern is used to

broadcast events:

• Only Observers that are connected

to the Subject will be notified.

• Observers that are not attached will

not be notified.

30

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 16

• State

• Can be used in the Observer to

handle state information.

• Mediator

• Promotes loose coupling between

objects.

• Ensures independent transfer of the

state between the Subject and the

Observer.

• Singleton

• By making the Subject a Singleton, a

single access point to it is ensured.

 31

COS 121 – Christoph Stallmann

32

