Department of Computer Science - COS 121 September 2012

Observer Design Pattern
COS 121 — Christoph Stallmann

Introduction

* Connect multiple objects to one subject.
» |If the subject changes:
» All connected objects are notified.

* Depending on the subject’s change,
the objects will update accordingly.

Christoph Stallmann - University of Pretoria

Department of Computer Science - COS 121 September 2012

Reason

* When a change in one object effects
other objects.

* When you are unsure on how many
objects will be connected to another
object during runtime.

*» When the event and response should
be encapsulated in different objects.

* When multiple object communication is
too tightly coupled.

Structure

Subject
observerlList : Observer* Observer
attach(: Observer)
detach(: Observer) +update()
notify()

ConcreteSubject ConcreteObserver
-subjectState : State* |/ __|-observerState : State*
tgetState() : State* | -subject : ConcreteSubject®

setState() +update()

A

8

Christoph Stallmann - University of Pretoria 2

Department of Computer Science - COS 121 September 2012

Participants - Observer
* May be abstract.

» Defines the interface of objects that may
observe the subject.

* Provides the means by which the
observers are notified when the subject
changes.

Observer

+update()

Qe
Participants - Subject
* May be abstract.
* Defines the interface by which
observers can attach to and detach
from the subject.
» Updates the observers when notified.
Subject
-observerList : Observer*
attach(: Observer)
Hdetach(: Observer)
Lnotify() _l
for each observer in observerList ﬁ &
observer->update();
[]

Christoph Stallmann - University of Pretoria 3

Department of Computer Science - COS 121 September 2012

Participants - Concrete Subject
* Implementation of the subject being
observed.

» Keeps track and provides functionality
to access the internal state.

ConcreteSubject
-subjectState : State*

+setState()

+getState() : State* —-|

return subjectState; ﬁ
6

g

Participants - Concrete Observer

» Maintains a reference to the subject it
observes.

» Updates and stores state information.

* Maintains consistency with the subject’'s
state.

ConcreteObserver

observerState : State*
Lsubject : ConcreteSubject*
Hupdate()

A

8

abserverState = subject->getState(); ﬁ

Christoph Stallmann - University of Pretoria 4

Department of Computer Science - COS 121 September 2012

The Process

Initial state.

Observer 1

Observer 2

Observer 3

Observer 4

The Process

Attach observers to the subject.

Observer 1

Observer 4 Subject Observer 2

Observer 3

Christoph Stallmann - University of Pretoria 5

Department of Computer Science - COS 121 September 2012

The Process

Observers are now connected to the
subject.

Observer 1

Observer 4 Subject Observer 2

Observer 3

The Process

Somewhere along the line the subject
changes.

Observer 1

Observer 4 Subject Observer 2

Observer 3

Christoph Stallmann - University of Pretoria 6

Department of Computer Science - COS 121

Observer 4

the subject.

Observer 4

Christoph Stallmann - University of Pretoria

The Process

The subject notifies all the observers
connected to it.

The Process

The observers determine the state of

Observer 1

Subject

Observer 3

Observer 1

Subject

Observer 3

September 2012

Observer 2

Observer 2

Department of Computer Science - COS 121 September 2012

The Process

* The observers handle the change in the
subject accordingly.

Observer 1

Observer 4 Subject Observer 2

Observer 3

The observers can also be detached as

needed.

Observer 4

Subject Observer 2

Observer 3

Christoph Stallmann - University of Pretoria 8

Department of Computer Science - COS 121 September 2012

The Observer in Qt

Implemented as Signals and Slots in Qt.
Multiple Slots can be connected to one
Signal.

If Signal is “emitted”, all Slots are
notified.

The Observer in Qt

* Attach an observer:

QObject::connect(button, SIGNAL(clicked()),
this, SLOT(doAction()));

« Detach an observer:

QObject::disconnect(button, SIGNAL(clicked()),
this, SLOT(doAction()));

C05121 - Observer - [Preview]

Username: | |

Password: \ |

If the button is clicked, doAction() will be

executed. a
Qe

Christoph Stallmann - University of Pretoria

Department of Computer Science - COS 121 September 2012

Example - Video

hitp://youtu.be/HoA4LZ7a-0Ol

Example - Layout

Environment

Christoph Stallmann - University of Pretoria 10

http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI
http://youtu.be/HoA4LZ7a-OI

Department of Computer Science - COS 121 September 2012

Example - UML

Subject |

Person
[: < *> " T
mObs:‘wers vector Pe*r)son [msubject : Subject*
+attach(person : Person
l-detach(person : Person*) 3 +ferson()
 notifyl) [+~Person()
l+state() : string H'ante” . . PR
 setstatefstate : string) HregisterSubject(subject : Subject*)

i i

Environment Soldier
-mState : string

—(_ — — __ __|mstate:string
HEnvironment()

+Soldier
H+state() : string L upd atetl})
HsetState(state : string)

Example - Code

Christoph Stallmann - University of Pretoria 11

Department of Computer Science - COS 121 September 2012

Example - Output

visore@ubuntu: ~/Desktop/Code/PullModel
File Edit View Search Terminal Help
visore@ubuntu:~/Desktop/Code/PullModels ./GamePatterns

e ok ko ook ok ok ok
Game Patterns T

Observer b

ek k kR kKRR Rk kk ko kKKK k AR R AR
Christoph Stallmann i
University of Pretoria i

C0s121 - 2012 i

ek k kR kKRR Rk kk ko kKKK k AR R AR

Nothing is happening.
The soldier is doing nothing.
Someone was killed.

The soldier is inspecting.
Nothing is happening.
The soldier is doing nothing.

visore@ubuntu:~/Desktop/Code/PullModels I

8
Improvements Achieved
» Separation of concerns:
* Observers are not embedded into a
subject.
* Observers can register and
deregister as required.
* The state change and the event
action are encapsulated.
» Elimination of “busy wait”:
* |nstead of continuously checking if
the state changed, observers are
notified.
* More efficient. .
8

Christoph Stallmann - University of Pretoria 12

Department of Computer Science - COS 121 September 2012

Implementation Issues

» When implementing the Observer, the
following has to be considered:
* How do we detach and manage the
Observers?

* How is the state transferred from the
subject to the Observer?

Issues - Detaching

* When the Observer goes out of scope it
must detach from the Subject.

* Can be done manually.

* Or detach the Observer in it's
destructor.

» If the Concrete Observers are
further extended, make sure the
parent destructor is declared
virtual.

* Ensures that the subclass
destructor is called first when
using polymorphism.

A

8

Christoph Stallmann - University of Pretoria 13

Department of Computer Science - COS 121 September 2012

Issues - State Transfer

» The Concrete Subject has a state.

» This state has to be synchronized with
the Concrete Observer.

» Two models to do this:
e Pull model
* Push model

State Transfer - Pull Model

* The Concrete Observer retrieves (pulls)
the state from the Concrete Subject.

ConcreteSubject ConcreteObserver

-subjectState : State* |» _ ___ __|-observerState : State*
-subject : ConcreteSubject™

+update()

H+setState()

[+getState() : State* —-‘|

return subjectState; ﬁ observerState = subject->getState(); ﬁ

Typically the Concrete Observer

retrieves the state by calling a getState

function on the Concrete Subject. %
A 4

Christoph Stallmann - University of Pretoria 14

Department of Computer Science - COS 121 September 2012

State Transfer - Push Model

* The Subject sends (pushes) the state to
the Observer.

Subject
-observerList : Observer* Observer
L, . *
giesbtate K =——————1.0bserverState : State*
lrattach(: Observer)

. *
+detach(: Observer) fupdate(: State”)
Hnotify() =i —l

for each observer in observerList observerstate = state:
observer->update(subjectState); - !

Typically the Subject transmits the state
as a parameter of the Observer’s
update function. 6

g

Common Misconceptions

* The Observer pattern is used to
broadcast events:

* Only Observers that are connected
to the Subject will be notified.

* Observers that are not attached will
not be notified.

Christoph Stallmann - University of Pretoria 15

Department of Computer Science - COS 121 September 2012

Related Patterns

* State

¢ Can be used in the Observer to
handle state information.

* Mediator

* Promotes loose coupling between
objects.

* Ensures independent transfer of the
state between the Subject and the
Observer.

» Singleton

* By making the Subject a Singleton, a
single access point to it is ensured.

g

r?'

NierEnd

Observer Design Pattern
COS 121 - Christoph Stallmann

Christoph Stallmann - University of Pretoria 16

