Department of Computer Science UNIVERSITEIT VAN PRETORIA
v YUNIBESITHI YA PRETORIA

Chapter 12- Decorator Design Pattern

Copyright ©32015 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

(12.2.3 Participants|

[12.3 Decorator Explained]
(12.3.1 Code improvements achieved|
(12.3.2 Implementation Issues 00000

12.1 Introduction

The decorator pattern is used to extend the functionality of an object without changing
the physical structure of the object [2]. The extension is either in terms of elaborating
on the state of the object or in terms of behaviour. A combination of both state and
behaviour is also possible which implies that these extensions can be stacked on the
object and rather than using subclassing, which is a compile-time solution, the extensions
can be applied at runtime.

In the sections that follow, an overview of the structure of the decorator pattern will be
given along with an explanation of how the decorator can be applied. The two examples
presented will illustrate how the decorator can be implemented. The first example will
decorate the composite tree developed in Lecture note 14, while the second example will
show how decorations of a till slip can change how the till slip is structured.

12.2 Decorator Pattern

12.2.1 Identification

Name Classification Strategy
Decorator Structural Delegation (Object)
Intent

Attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality. ([1]:175)

12.2.2 Structure

sualjgpn for "I'Cemponent
ey component
0.1
Fa JAN
void operation () AN
{
ConcreteComponent Decorator component->operation();
+operation() -component @ Component™
+operationl) 00 [T -----------------d }
ConcreteDecoratorA ConcreteDecoratorB void operation() B
-addedState : StateType +addedBehaviouri)
+operation() OB LD T - - - - - - -
Decorator::operation();
addedBehaviour();
1

Figure 1: The structure of the Decorator Pattern

12.2.3 Participants

Component

e interface for objects that can have responsibilities dynamically added to them
ConcreteComponent

e the object to which the additional responsibilities can be attached
Decorator

e defines a reference to a Component-type object
ConcreteDecoratorA

e adds state-based responsibilities to the component
ConcreteDecoratorB

e adds behavioural-based responsibilities to the component

12.3 Decorator Explained

The structure of the Decorator is similar to the Composite. The main differences are the
number of components related to; and the specialisations the composite and decorator
may have. The composite comprises of multiple components, while decorators may or
may not comprise of a component. The composite class is defined as a concrete class,
while the decorator class is abstract and concrete decorator participants specialise the
decorator. The second difference ensures that the composite builds a tree data structure,
while the decorator only a list data structure.

As with the composite, it is the concrete components that are to be decorated and there
may be multiple of these. A single concrete component object may also have more than
decorator instance applied to it. Figure [2| provides a few combinations of decorators that

may be applied to the concrete component class.

ConcreteComponent
ConcreteComponent

Figure 2: Examples of list structures of objects created by the Decorator

ConcreteComponent

It is conceivable that a list may be decorated with the same concrete decorator more than
once, it is however not always practical. The order of the application of the concrete

decorator should also be independent of one another and the net effect should be the
same. The reason being that decorated objects should behave as if defined as a single
large object with all the additional responsibility embedded in it.

12.3.1 Code improvements achieved

The advantage of applying the decorator design pattern is that objects of the concrete
component provide the basic functionality expected of such a component. Any additional
responsibility, be it state-based or behavioural-based, can be seen as adding value to the
object, but is not embedded in the object. This design separates the concerns of required
functionality and “nice to haves”.

12.3.2 Implementation Issues

Two types of concrete decorators are defined, those that add state-based responsibili-
ties and those that add behavioural-based responsibilities. It is easier to implement the
state-based concrete decorators than it is to implement the behaviour-based responsibility
version. It is also conceivable that both these types of responsibilities are included in a
single concrete decorator class.

The same issues, as with Composite, arise when dealing with anonymous references.

12.3.3 Related Patterns

Adapter
Changes the interface to an object while the Decorator only changes responsibilities.

Composite
A Decorator can be seen as a Composite with only one component that has added
responsibility.

Strategy
The Strategy pattern changes the inner workings of an object while the Decorator
changes the looks.

12.4 Example

12.4.1 Tree

To decorate the BaseNode of the tree example presented in Chapter 11, the decorator
pattern is applied to the Tree and BaseNode classes as shown in Figure [3] Notice that
destructors have been added to the hierarchy in order to ensure that the decorator clears
the memory when the first object in the list goes out of scope. The destructors for the
classes Tree, BaseNode, BehaviourDecorator and StateDecorator are all defined as
virtual and an implementation with no statements is provided. The destructor of the
Decorator class deletes the instance referred to by the attribute component.

Tree

+add(Tree *} : void | component
+print() : void
+~Tree() 0.1

A M

L Q)

BaseMode Decorator

-value : int Hoomponent © Trea*

+BaseModelv : int) +Decorator(t @ Tree *)

+print() : void +add(t : Tree *) : void

+add(Tree *) : void +print() ; woid

+~BaseModel) +~Decorator)

FA JA
StateDecorator BehaviourDecorator

-colour : string +BehaviourDecorator(t © Tree *)
+5tateDecoratorit : Tree *, ¢ : string) +print() : void _
+prnt) : void #addedBehaviour() : void

Figure 3: Decorating the Tree: showing only the decorator pattern

Both the print functions defined in the concrete decorator participants make calls to the
parent print function to ensure that all chained prints are executed. Sample implemen-
tations of the print functions are given.

void Decorator:: print ()

{
}

component—>print ();

void StateDecorator:: print ()

{

cout << 7!”7 << colour << "7
Decorator :: print ();
cout << "7

Y

}

void BehaviourDecorator :: print ()

{
addedBehaviour ();

Decorator :: print ();

Figure 4| shows how the Composite and Decorator design patterns can be used together.
It is now possible to decorate the composite participant, IntermediateNode, as well.

next Tree component
+add(Tree *) : void P
. +print() : void 0.1
0.5 |4~Tree()
1 1
IntermediateNode BaseNode Decorator
~value : int ~value : int #component © Tree*
-next : vector<Tree"= +BaseModefv : int) +Decoratorit : Tree *)
+IntermediateModelv : int) +print() : void +add(t : Tree *) : void
+add(Tree *) : void +add(Tree *) : void +print() : void
+print() : void +~BaseModal) +~Decorator()
+~IntermediateMode()
il JA
StateDecorator BehaviourDecorator
—colour : string +BehaviourDecorator(t : Tree *)
+StateDecoratorit : Tree *, ¢ : string) +print() : void :
+print() - void #addedBehaviour() : void

Figure 4: Decorating the Composite Tree

12.4.2 SalesTicket

This example illustrates how the decorator can be applied to change the “look” of a till
slip (also referred to as a sales ticket) and customise it for a particular situation. A
typical till slip has a header section where the name of the shop is printed, a body where
a list of purchases are given and a footer with some friendly message or information. The
basic functionality of the till slip is to provide the customer with the items listed in the
body of the slip. The shop name displayed in the header and the greeting printed in the
footer are “nice to have” and provide an individual identity for the till slip. These added
responsibilities can easily be included by decorating the till slip with a header and a footer
that is customisable for the particular shop.

Figure [5] presents the UML class diagram for the description of the till slip given above.
The class SalesTicket represents the ConcreteComponent participant of the design pat-
tern. SomeClass represents the Decorator participant and the classes Headerl, Header?2,
Footerl and Footer2 the ConcreteDecorator participant. SalesOrder represents the client
for the design pattern.

Understanding how the pattern works can be tricky and therefore some coding aspects of
the pattern are highlighted, specifically how printTicket is implemented for the partici-
pating classes. The printTicket of the SalesTicket class prints the body of the till slip.
SomeClass first checks whether the Component has been decorated before it called the
relevant printTicket function for linked component. The functions for both the Header

6

SalesOrder
-order : Component® Component myComp
+5alesOrder{Component *) 1 arder +printTicket() : veid [~5
+printTicket]) : void <> -
+~SalesOrder() 0.1 /% JA
1
SalesTicket SomeClass

+printTicket() : void -myComp : Component*®
+printTicket(: void
+5omeClass(myC : Component *)

+~5omeClass()

A Jay

Footerl

+Footerlic : Component *)
+printTicket(: void

Headerl
+Headerlic : Component *)
+printTicket() : void

Header2

Footer2

+Header2(c : Component *)
+printTicket(: void

+Footer2ic : Component *)
+printTicket : void

Figure 5: Printing sales tickets with the decorator

classes must first print their message before passing the printing on to the next compo-
nent. The Footer classes do this in reverse to ensure that the relevant text is displayed
at the bottom of the till slip.

void SalesTicket ::printTicket ()

{
cout<<” Cash_Sale_Ticket”’<<endl;
cout<<” List oof_items_purchased”<<endl;
cout<<”Item”<<’\t '<<” Quantity"<<’\t '<<” Price”<<end]l;
// print the items out
cout<<”TOTAL: "<<endl ;

void SomeClass:: printTicket ()

{
if (myComp)
myComp—>printTicket ();

void Headerl:: printTicket ()

{

cout<<”Welcome_to_the_Crazy._Zone’<<endl;
SomeClass :: printTicket ();

void Footerl::printTicket ()

{

SomeClass :: printTicket ();
cout << "It_was_.a_pleasure._doing” <<

7

_business._with_you’<<endl;

12.5 Exercises

1. Is it possible for the Composite design pattern to be restricted to build a list data
structure? Explain.

2. For the combination of the Decorator and Composite given in Figure[d], identify the
participants of both patterns.

3. In the sales ticket example given in Figure [5] it is possible to construct the concrete
classes using the default constructor. Doing so will cause memory problems within
the classes. Explain how you would go about to fix the problem.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[2] Wikipedia. Decorator pattern, 2012. URL http://en.wikipedia.org/wiki/
Decorator_pattern. [Online; accessed 27 August 2012].

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

	Introduction
	Decorator Pattern
	Identification
	Structure
	Participants

	Decorator Explained
	Code improvements achieved
	Implementation Issues
	Related Patterns

	Example
	Tree
	SalesTicket

	Exercises
	References

