Department of Computer Science UNIVERSITEIT VAN PRETORIA
v YUNIBESITHI YA PRETORIA

Chapter 13- UML Sequence diagrams

Copyright ©32015 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

3.1 Tntroductionl 2
3.2 Notational Elements 2
321 Frames e 2
1322 Difelines. 3
(13.2.3 Creation and Destructionl 3
(13.2.4 Messages| L 4
[13.2.5 Reflexive messages| L 6
(13.2.6 Example] 6
13.3 Branching|. 8
13.3.1 Notationl o 8
(13.3.2 Examplel 8
3.4 Tterationl 8
[13.4.1 Notationl 8
(13.4.2 Examplel 9
3.5 Parallel actions 12
13.5.1 Notationl e 12
(13.5.2 Example] 12
(13.6 Reference to fragments| 13
3.7 Exercisesl 14
Referencesl 14

13.1 Introduction

UML 2.0 includes a number of interaction diagrams. These are sequence diagrams, inter-
action overview diagrams, timing diagrams and communication diagrams. In this lecture
we will look specifically at sequence diagrams. They are used to model how objects in-
teract with one another in terms of the messages they pass to one another. While all
interaction diagrams model these interactions, sequence diagrams emphasise the order of
the messages over time.

The way in which object oriented programs systems produce useful results is mainly
through passing messages between objects. These messages appear in the form of method
calls. A sequence diagram can be used to model the order in which methods are executed
as a reaction to some event.

13.2 Notational Elements

We show the notational elements of sequence diagrams in terms of the interaction between
two simple classes in the class diagram shown in Figure[I] The Integer class is a wrapper
for an integer value. Its getter simply returns its current value while its setter passes a
double value which is rounded before it is converted to an integer. The constructor of
these classes initialise their respective instance variables to 0. In the case of Client, its
instance variables are initialised to NULL pointers.

Integer
-value : int
Client +setValueitheValue : double)
~-topNumber : Integer® ‘#+geﬁalue{} sint
-bottomMumber : Integer® +increase(increment @ double)
+getSquarel) ; int

Figure 1: A class containing pointers to another class

13.2.1 Frames

"sd Name}ké#murd}

Figure 2: Sequence diagram frame

Sequence diagrams are drawn in frames. Figure [2 shows a frame of a sequence diagram.
A frame is a rectangle with a heading in a compartment in the top left corner. The
compartment for the heading is drawn as a rectangle with the lower right corner cut off.

The heading is used to name a diagram or to indicate the scope of loop structures (Sec-
tion [13.4)), conditional statements (Section and parallel flows (Section within
a diagram. If it is used to name a diagram it is recommended that the name describe the
essence of the interaction modeled in the diagram. When the frame is used within a dia-
gram to show the scope of some subsection containing non-sequential flows, the heading
should contain the appropriate keyword.

13.2.2 Lifelines

sd "Uifeting s

: Client topMumber : Integer bottomMumber : Integer

Figure 3: Lifeline notation

In sequence diagrams lifelines represent object instances. They are vertical lines inside
the frame. Figure [3| shows three lifelines of objects that might be instantiated in our
example. The rectangle at the top of each vertical dashed line identifies the participating
object. The syntax is the same as for objects in object diagrams; an object name, a colon
and a class name. In this figure the instance of the Client class is an anonymous object.
Therefore it has only the class name in its identifier. Note that a colon precedes the class
name in all cases.

The order of these lifelines is not significant, but by convention general flow starts at the
leftmost lifeline and there is a general flow of messages across the diagram from left to
right.

13.2.3 Creation and Destruction

It is important to realise that objects in a sequence diagram are instantiated instances
of classes in a system. Upon creation of the Client class the pointers to topNumber and
bottomNumber are initiated to NULL pointers. Therefore, the lifelines of these objects
should appear only after they are created.

Assume the following is the main method executed by the Client application:

int main ()

{
topNumber = new Integer ();
delete topNumber;
return 0;

}

Figure {4] shows how this program should be modeled. A creation action is shown with
a dashed arrow with lined arrowhead to the identifier of a new lifeline. The arrow is
labelled with the signature of the constructor that is called. Destruction is shown with an
unlabeled arrow with filled head from the object that sends the destruction message to
the point of destruction of the destructed object. The pont of destruction is shown with
a heavy cross at the end of the lifeline.

"§d Construction and dESIrUCIIDﬁJ :

: Client

1: Integer() topMNumber : Integer

b
X

2: ~Integer()

Figure 4: Construction and destruction

13.2.4 Messages

We will show simple messages that can be executed by instances of the two classes in the
class diagram in Figure [I}

Assume the following program fragment executed by the Client application after topValue
was created:

double aValue = 2.66;
topNumber—>setValue (aValue);

Figure |5] shows how this interaction is modeled in a sequence diagram. The only inter-
action modeled here is the call to the Integer instance called topNumber using its setter.
We assume that the creation and destruction time is not relevant in our model. This is

a simple method call with no return value. This notation should be used for all method
calls using methods with void return values.

‘sd "sat valne)

: Client

topMumber : Integer

I
I
1: setValueitheValue : douhble) I

|

>

Figure

5: Message call without return value

Note that the label on the message in the diagram is the method signature and does not
contain reference to the variable that was used when this message was sent.

Next assume the followingline of code is executed by the Client application:

int aValue = bottomNumber. getValue ();

Figure [6] shows how the interaction of this line of code is modeled in a sequence diagram
under the assumption that bottomNumber was properly instantiated. The interaction that
is modeled here is a call to the Integer instance called bottomNumber using its getter. This
is a method call with a return value. The return of a value is shown using a dashed arrow.
This notation should be used for all method calls using methods with return values.

"&d Get ualué')

» Client

bottomMumber : Integer

Figure 6: Message call with a return value

13.2.5 Reflexive messages

A reflexive message, referred to as self message in Visual Paradigm, is when an object
calls a method that is defined in its own class. Typically methods with private scope can
only be called by objects that are instances of the class that implements the method. This
is the case with the increase(:double) and getSquare() :int methods defined in the
Integer class in Figure [l getSquare():int has an int return value while the return
value of increase(:double) is void. Figure 7| illustrates how these method calls are
modelled.

"sd Incrément self'and Cet owh équare)

topMumber : Integer bottomMumber : Integer

[:|:| 1: increasefincrement © double)
I
I
|
| [:|:| 2: getSguare() : int
|
I
|

Figure 7: Reflexive message call without a return value and with a return value

13.2.6 Example

We will show an example of interaction between instances of the classes in the class
diagram in Figure This application implements the Strategy design pattern. These
classes are used in a simple text-based two-player game where the user can select the
strategy for his dragon and attack his opponent’s dragon.

The modeling of interaction in the system requires knowledge of the implementation of
the methods involved in the interaction. The following code shows the implementation of
the methods we model in this example:

void Dragon :: attack(Dragon* enemy)

{

strategy —>fight (enemy, attackPower);
float enemyPower = enemy—>getAttackPower ();
lifeForce —= strategy —>getRecoil (lifeForce , enemyPower);

}

void Dragon :: receivelnjury (float enemyPower)

{

attackPower

fi sual Paradigm D‘I’mﬂ- pndiard EditiandLl
-lifeForce : int
-attackPower : float

Strategy

#style : char®

+5Strategy()

-strategy : Strategy® ‘=
+Dragoni()

+~ Dragon()
+setStrategyl : Strategy™)
+isAlive() : bool

+attack(: Dragon®)
+receivelnjury(: float)
+getAttack Power() : float
+showStatus()

+~ Strategy()
+fight(: Dragon, : float)

+getRecoil{ - int, : float) : int

+fight(: Dragon®, : float)
+getRecoill - int, : float) : int
+gainExperiencel : float, : float) : float

+gainExperience(: float, : float) : float
+getFightingStylel) : char*
Defensive Aggressive
+Agaressive()

+fight(: Dragon®, : float)

+getRecaill @ int, : float) : int

+gainExperiencel : float,

: float) : float

Figure 8: An application of the Strategy Design Pattern

= strategy —>gainExperience (attackPower, enemyPower);

void Aggressive

{

int num = rand ();

d—>receivelnjury (ownPower * (num % 2 + 2));

}

float Defensive

fight (Dragon*x d, float ownPower)

gainExperience (float ownPower, float enemyPower)

{

return (ownPower + enemyPower/2);

}

Assume the that two dragons (norbert and smaug) have been instantiated. Further
assume that the following statements have already been executed:

norbert—>setStrategy (new Aggressive ());
smaug—>setStrategy (new Defensive ());

Figure [0 shows how the interaction resulting from the following statement is modeled in

a sequence diagram.

norbert—>attack (smaug);

"§d ‘Horbet (aggressive) attacks smaiig tdefensive]}

norbet : Dragon . Aggressive smaug : Dragon : Defensive

I

I |
attack(Dragon®) I

|

|

| I
| |
| |
| |
| |
| |
fight(Dragon®, float) I I
| |
i |
|

|

receivel njuryifloat)

gainExperie nce(float, float) : float

getAttac kan‘ler[': : float T

getRecoillint, float) : int
St ED
T

——————

Figure 9: Example of interaction between multiple objects

13.3 Branching

13.3.1 Notation

Branching happens when the program flow contains conditional statements. Figure
shows the notation to model an alternate structure. A typical if or switch statement is
modeled by showing the alternative interactions in different sections in a frame with the
keyword alt in its header. The different sections are separated with dotted lines. The
condition that needs to be true for a section to execute is shown as a guard in the top
left corner of each section. One may have as many sections as needed. If there is only
one section, the frame may alternatively be labeled with the keyword opt.

13.3.2 Example

Figure 11 models the interaction for an application for which a ConnectionController
object has to open up a connection to a Modem object. This example was adapted from [2].
If the modem does not respond within a certain amount of time signaled by a Timer object,
the operation times out and an error dialogue box is created and displayed. If the modem
responds, the timer is cancelled and the modem is initialised.

13.4 Iteration

13.4.1 Notation

Iteration happens when the program flow contains looping statements. Figure [12 shows
the notation to model recurrence. A typical for or while statement is modeled by showing

“&d “Altéfnative rowsJ

ohjectl : Class ohject? : Class ohject3 : Class

I I
I I
I I
f f
alt | |
[conditionl] I I

I

|

|

f

|

|

1 Messagel I
|

I |
|

|

[condition2]

Figure 10: Syntax for alternate flows

the repeated interactions in a frame with the keyword loop in its header. The condition
that needs to be true for the interactions n the frame to be executed is shown as a guard
in the top left corner of the frame. In this example message 1 returns its result only after
message 2 had completed all its iterations.

13.4.2 Example

The sequence diagram in Figure contains a loop fragment. This example is taken
from [I]. The guard in the loop fragment tests to see if the value of hasAnotherReport
equals true. If the hasAnotherReport value equals true, then the sequence goes into the
loop fragment, else the flow proceeds to the first event after the loop. In this case it is
the termination of the getAvailableReports() message execution. The content of the
loop fragment is interpreted the same way one would follow the messages in the loop as
you would normally in a sequence diagram.

§d 'CorRect to modem}

. ConnectionController ‘ ‘ - Timer | | - Modem

startitimeout : int)

o

A —

|
opehi)
p !h[>
alt]
[modem responds)
ready()
. |
cancel(y |
-
i initialise(baud : int, side : int, parity : bool)
[timer responds]
| |
| |
timeout() I !
: ErrorDialog

o

Figure 11: Connection to a modem with alternate flows

Iteration J
‘ object: Class ‘ ‘ object: Class ‘ ‘ object: Class

i Message 1 L
|

loop J [condition] i
|
I
|
i
< ,,,,,,,,,,,,,,,, L]

Figure 12: Syntax for a loop structure

10

syrodar [[e 105) ¢ oINS

_ T, |
. sJIDdEYa|qe|EAE

R — G = R R :
Jodaegouysey
“ “ ™ _ “ [U_ton_m“wtm._._ua_._d.mm:
| | F _ |
[podaye) ppe [|gaa
I L I I paunbel -4 e EueEeE] %
_ _ _m_>m_._3_5um_mnm:_3_u_m: _
™ | | | |
asalAJdNIaspadnbayiab
_ N _ _ _ (ol p
| | | | |
e — | —— o e)
_ _ _ Lodaye _
_ [= _ _ { UHL__u_nm,n_uxngmm
_ _ _ _ _ [2ny = podeyiauyougsey]
_ | _ | _ e
... .
* Jadayeyjougsey _ =
- | I

—

{) sypodey)gieb

_ { Jmau
_ T R
[BAET@ILRIES| BN
_ __”Jm_tm_mz YRz RBL=Y =T PN N gw=lea =l
il
_ _ _ {1 syodeysgeienyyah
Tioday © Jodage SH00Ey |« nugs) 00l SHO08Y | SHOOSJo|GE[EAE GIEERNH E1EASAIINTES, | Wa)shsas IEsAShOIn0eY |« Wa]shs TEAEUGEDUEL © J5AELE

11

13.5 Parallel actions

13.5.1 Notation

It is also possible to model interactions that are executed at the same time in parallel.
Figure |14] shows the notation to model this. It is modeled by showing the parallel inter-
actions in different sections in a frame with the keyword par in its header. The different
sections are separated with dotted lines. In this case all the sections will be executed at
the same time and execution of the interactions after the parallel fragment commences
after all the parallel threads has completed their actions. One may have as many sections
as needed.

Parallel actions
l object: Class ‘ l object: Class ‘ object: Class

Figure 14: Syntax for parallel actions

13.5.2 Example

The sequence diagram in Figure contains concurrent events as well as a condtional
statement. This example was adapted from [3]. When a transaction is created, it creates
a transaction coordinator to coordinate the checking of the transaction. This coordinator
creates a number (in this case, two) of transaction checker objects, each of which is
responsible for a particular check. These checkers are called asynchronously and proceeds
in parallel. Thus, the top of the two subframes contains parallel flows.

When a transaction checker completes, it notifies the transaction coordinator about its
success whereafter the controller destroys it. The coordinator continuously looks if check-
ers calls back and will only continue with operation once all the transaction checkers have
reported back. This concludes the parallel flows.

The conditional flow is selected after the coordinator have executed a reflexive check to
determine if all the checkers were successful. If so, it reports success to the transaction,
else it reports failure. After completion of the conditional statement, the transaction
destroys the coordinator.

12

Create transaction

: Transaction

! Coorinator() .
oo

ar |
par; Checker()
R L e ~>{ check1: Checker |

success(:bool)

| 1
| X
|
_____ e e e
| Checker
bommmmmmmmmmmsoossoooos (—)——————————————>(check2: Checker |
| |
! success(:bool) [
D i

»X

allSuccess():bool

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alt [allSuccess = true]

success()

<

Figure 15: Creating a banking transaction

13.6 Reference to fragments

If a diagram becomes complex, it it advisable to model it in fragments. A fragment is
a sub-diagram. A placeholder for a fragment is shown in a diagram using a frame with
the keyword ref in its header. This placeholder contains only the name of the diagram
that contains the detail of the fragment. Figure models the same application as in
Section but by defining parts of the diagram in fragments.

13

Connect to modem)
[: ConnectionController | [: Timer]
i start(timeout : int i i
! ()h |
: open() >
alt) [modem respohds] ; ;
ref ‘ ‘
Modem Responds
[~ ltimerresponds] TTTTTTTTTTTTTTTTTTT .
| | |
ref
Connection Times Out
Modem Responds
| : ConnectionController | [: Timer |
» ready()
|
cancel() l
P

initialise(baud:int, size:int, parity:bool)

|
|
|
[
| |
| |
| |
F |
| |
| |
| |
| |
r
| |
| |

Connection Times Out)

[: ConnectionController | [: Timer |

! timeout() \
|

ErrorDiang(messége:string) _____ ErrorDialog

Figure 16: Connection to a modem with alternate flows presented in fragments

13.7 Exercises

1. Use the code given in Section and the implementations of other relevant
methods shown in the class diagram in Figure |8 that can be found in the code that
was given for Prac 4. Assume the that two dragons (norbert and smaug) have been
instantiated. Model the interaction resulting from the following code fragment in
the Game class.

norbert—>setStrategy (new Aggressive ());
smaug—>setStrategy (new Defensive ());
smaug—>attack (norbert);

14

References

[1] Donald Bell. Uml basics: The sequence diagram. http://www.ibm.
com/developerworks/rational/library/3101.html, 2004. [Online] accessed
2011/08/22.

[2] Simon Bennett, John Skelton, and Ken Lunn. Schaum’s Outline of UML. McGraw-Hill
Professional, UK, 2001. ISBN 0077096738.

[3] Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard Object Mod-
eling Language. Addison-Wesley, Reading, Mass, 1997.

15

http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html

	Introduction
	Notational Elements
	Frames
	Lifelines
	Creation and Destruction
	Messages
	Reflexive messages
	Example

	Branching
	Notation
	Example

	Iteration
	Notation
	Example

	Parallel actions
	Notation
	Example

	Reference to fragments
	Exercises
	References

