Department of Computer Science UNIVERSITEIT VAN PRETORIA
v YUNIBESITHI YA PRETORIA

Chapter 4- Factory Method design pattern

Copyright ©32015 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents
|1.1 IIlt;I (l!ill(:l}i(!lll
4.2 Programming preliminaries|. 00000
4.2.1 Constructors] e
422 Destructors Lo
[4.2.3 An example].
4.3 Factory Method Pattern|
|1‘;i‘1 Isigzlll iiigzgltigzlll ---------------------------------
4.3.2 Structurel . ..o L e e
433 Probleml
[4.3.4 Participants|
4.4 Factory Method Pattern Explained|.
41 Clanficationl o
[4.4.2 Code improvements achieved|
[4.4.3 Implementation Issues| 0000
4.4.4 Common Misconceptions|
4.4.5 Related Patterns
4.5 Example|.
[4.5.1 Implementation notes| oL
[4.5.2 Main program|
4.6 FExercisesl
Referencesl

4.1 Introduction

This chapter will introduce the Factory Method design pattern. The pattern provides
a structure whereby the creation of objects is delegated to subclasses in such doing not
needing to specify the class that the object belongs to.

4.2 Programming preliminaries

When an object is instantiated (created), a constructor is called. If a constructor, with the
specific parameter list, is not defined for the class the default constructor is called. When
an object goes out of scope (deleted, destroyed), the destructor is called. The behaviour
exhibited by the constructor and destructor is to handle memory and attributes. The
constructor allocates memory for attributes and assigns values to attributes, while the
destructor must release any memory that has been assigned during the life-time of the
object [1].

In Lecture Notes L04 - Template Method Pattern, constructors were used. The lecture
note showed how to make use of member-list initialisation in order to assign values to the
attributes of the class. It also illustrated the use of the member-list initialisation technique
to call the constructor of the base class in an inheritance relationship. In this section, the
concepts of object construction, destruction and initialisation will be explained in more
detail.

4.2.1 Constructors

The constructor is a member function defined in the class. The name of the constructor
is the same as that of the class. The constructor can take parameters, but does not have
a return type. A constructor that does not take any parameters is called the default
constructor. If a constructor, or the default constructor, has not been defined for the
class, the compiler will automatically generate a default constructor so that objects of the
class can be created.

Constructors are used to initialise class member variables (attributes) and other setup-
type requirements for the object. Initialising of member variables can be done either
in the body of the class or in the member-list initialisation of the constructor. The
choice between body or member-list is simple, variables that do not require memory to
be allocated on the heap can be initialised using the member-list, otherwise they should
be initialised in the body. Superclass constructors must be called in the member-list in
order for any superclass member variables to be initialised in a controlled manner.

4.2.2 Destructors

The job of a destructor is to release any memory that the object might have acquired
during its lifetime. As with constructors, if a destructor has not been explicitly defined,
the compiler will define a default destructor for the class. Unlike constructors, only one
destructor is needed per class.

The name of the destructor is the same as the class and it takes no parameters. To
distinguish the destructor from the default constructor, a destructor is define with a tilde
(~) before its member function name.

4.2.3 An example

Let us revisit the Employee example given in L04 - Template Method Pattern and apply
the understanding we have gained with regards to constructors and destructors.

Employee

#name : char*

#payRate : float

+EmployeeltheMame : char *, thePayRate : float)
+getName() : char *

+getPayRatel) : float

+paylhoursWorked : float) : float

i

Manager Secretary
#salaried : bool +5ecretaryitheMame : char *, thePayRate : float)
+ManageritheName : char *, thePayRate : float, isSalaried : bool)
+get5alaried() : bool
+paylhoursWorked : float) : float
-workDay() : void

Figure 1: Employee class diagram as presented in L04

The constructor parameter that is going to give the most problems in theName in Employee.
theName would have been allocated on the heap by the client. Merely assigning theName
to name will result in name pointing to the same memory location as what theName does.
Any changes made to the memory being pointed to will result in both variables, the one
in the client and the one in the Employee hierarchy, changing value. In order to make sure
that this does not occur, the class attribute name needs independent memory allocated to
it. The following implementation of the constructor does just this.

Employee :: Employee(charx theName,
float thePayRate) : payRate(thePayRate)
{

name = new char|[strlen (theName)+1];
strepy (name, theName);

}

Having allocated the memory in the class, the class needs to take responsibility to delete
the memory when it goes out of scope. It is therefore necessary to define the default
constructor in the class and provide the implementation for it. The class definition will
include the following as a public member:

“Employee ();

The implementation of the destructor follows:

Employee::” Employee () {
delete [] name;
¥

4.3 Factory Method Pattern

4.3.1 Identification

Name Classification Strategy
Factory Method Creational Inheritance (Class)
Intent

Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses. ([2]:107)

4.3.2 Structure

Creator Product

void anOperation(){ -product : Product*

#factoryMethody{) : Product *

product = factoryMethod(); _ _|+anOperation{) : void
H

ConcreteCreator ConcreteProduct

Product® factoryMethod({ -~ -|+factoryMethod(: Produet *|

return new ConcreteProduct(); < <instantiate
1

Figure 2: The structure of the Factory Method Pattern

4.3.3 Problem

The factory method essentially wraps the class construction into an operation with a
descriptive name and requires the concrete creator to make the decision as to which
product constructor is going to be called consequently resulting in the creation of the
product. The pattern solves the problem of having a tight coupling between objects that
create product and the product objects themselves.

4.3.4 Participants

Creator

e declares the factory method which returns a product object

e default factory method implementations may return a default concrete product
ConcreteCreator

e overrides the factory method to return an instance of the product
Product

e defines the product interface for the factory method to create
ConcreteProduct

e implements the interface for the product

4.4 Factory Method Pattern Explained

4.4.1 Clarification

The creator is not sure what class of product is to be created and delegates this responsi-
bility to it subclasses. It is the responsibility of the the concrete creator classes to create
specific product. This results in the parallel hierarchies of Creator and Product with
the dependencies between the hierarchies on the concrete level, ConcreteCreator uses a
ConcreteProduct.

4.4.2 Code improvements achieved

Objects are created in an orderly fashion. Central management of the object creation
process exists. This could be used with great effect to control the life-time of the object
and ensure that as with creation, deletion is also conducted in an orderly way.

4.4.3 Implementation Issues

The factory method can be implemented either by defining the creator class as abstract
or as concrete. In the case of an abstract creator class, a concrete creator per product
must be defined or the concrete creator needs to be parameterised to produce the correct
concrete product. When the creator class is defined as a concrete class it must provide
default implementations for all operations it defines.

4.4.4 Common Misconceptions

Using only a wrapper with a descriptive name for the construction process [3], does not
mean that a Factory Method design pattern has been used. Consider the ComplexNumber
class in Figure 3 that participated as the originator in the Memento pattern described in
LO03. There is no distinction in this class with regards to cartesian or polar coordinates and
implementing a constructor that can distinguish between these is not feasible as an extra
parameter will be required to make the distinction. The best would be to provide a public
operation, with a descriptive name, that indicates the co-ordinate system being used as
parameters for the creation of the object which returns an instance of ComplexNumber.

ComplexMumber
- real : double
- _imaginary : double
+ComplexMumber()
+ComplexMumberireal : double, imaginary : double)
+addic : ComplexMumber) : void
+multiplyic : ComplexMumber : void
+getReal() : double
+getlmaginary() : double
+printi) : void
+createMementol) | Memento *
+reinstateMemento(mem : Memento *) : void

Figure 3: UML class diagram of ComplexNumber

A suggestion for the implementation of these co-ordinate specific operations is given below.
The visibility of the constructor of the class that accepts two doubles as parameters can
be changed to protected in order to ensure that it is not inadvertently called with an
incorrect co-ordinate system.

ComplexNumberx ComplexNumber :: fromCartesian (double real , double imaginary)

{
}

ComplexNumberx ComplexNumber :: fromPolar (double modulus, double angle)

{
}

In order for this to be considered as an implementation of a Factory Method design
pattern, the ComplexNumber class needs to inherit from an abstract class, say Number.
The determining of the type of co-ordinate system should be left to the concrete creator
which forms part of the parallel factory hierarchy that needs to be defined. Refer to the
example given in section for a suggestion to implement the ComplexNumber class as a
product of the Factory Method design pattern.

return new ComplexNumber(real ,imaginary);

return new ComplexNumber(modulus*xcos(angle),modulus*sin (angle));

4.4.5 Related Patterns

Template Method
The Factory Method may make use of Template Method in both the Product and
the Creator hierarchies.

Abstract Factory
The Factory Method may be used in the implementation of the Abstract Factory
design pattern.

Prototype
Factory Methods can be used to initialise prototypical objects. The prototype also
can be used instead of the factory method to avoid large parallel hierarchies.

Singleton
In only one instance of a concrete factory is required, the concrete factory can be
made a Singleton.

4.5 Example

This example can be combined with the Memento example given in Lecture Note 03. For
clarity, all references to the Memento have been removed in order to illustrate only the
Factory Method design pattern. Figure {4 shows the relationships between the classes and
the structure of each of the classes participating in the Factory Method design pattern.

The corresponding pattern participants for this example are:

e Creator: NumberGenerator - an abstract class defining the factory method generateNumber.
nextNumber is a template method operation that forms part of the Template Method
design pattern in the example.

e ConcreteCreator: ComplexNumberGenerator - produces a ComplexNumber product
object. The instantiation of the product object is dependent on the co-ordinate
system encapsulated in the creator hierarchy.

e Product: Number - provides the interface for numbers.

e ConcreteProduct: ComplexNumber - defined exactly as it was for the Memento ex-
ample, except for the removal of the Memento specific operations and the inheritance
relationship with the Number class.

4.5.1 Implementation notes

To successfully implement the design pattern for the given example, the following should
be noted:

Virtual destructor
NumberGenerator defines the interface to generate different number types, specifi-
cally a complex number in this example. Instantiating an object of ComplexNumberGenerator

7

NumberGenerator
#value : double®

#ei ; numbe Number
size :int A =
~cartesian : bool < 0.1 +print(} : void
-number : Mumber* A
+MumberGe nerator()

+toggleCoordSystem() : void
+isCartesian() : bool

+generate Num ber() - Number *
+sefValuefdouble *, int) : void
+nextMumber() : Number *
+~MumberGe nerator()

ComplexMumberGenerator ComplexNumber
+ComplexMum berGenerator() -_real : double
+generate Mum ber() : Numbar *)) -_imaginary : double
+setValuelarr : double *, size : int) : void |- < =!Dstantates s +ComplexNumber()

+ComplexMumber(real : double, imaginary : double)
+addic : ComplexNumber) : void

+multiplyic : ComplexMumber) : void

+getReal() : double

+getimaginary() : double

+print() : void

Figure 4: UML class diagram for the example of the Factory Method design pattern

reserves heap memory that has been defined in the corresponding base class. In or-
der to successfully clear the memory when an object of ComplexNumberGenerator
goes out of scope, the destructor of the base class NumberGenerator must be de-
fined as virtual. This destructor must then deallocate the heap memory defined by
it that instantiating classes in the hierarchy would have allocated. The definition
and implementation of NumberGenerator is given in the listing that follows.

class NumberGenerator

{

public:

NumberGenerator ()

{

number = 0;
cartesian = true;
value = 0;

size = 0;

}s

void toggleCoordSystem ()

{

cartesian = !cartesian;

}s i

bool isCartesian () {
return cartesian;
b

virtual Numberx generateNumber() = 0;
virtual void setValue(doublex,int) = 0;

Number* nextNumber () {
number = generateNumber ();
return number;

}s

virtual “NumberGenerator ()

{
if (number != 0) {

number = 0;

}
if (size != 0) {

delete | lue;
value = 0;
ki
}
protected:
doublex value;
int size;
private:
bool cartesian ;

Numbers number ;

}s

Calling the constructor of the base class
In order to initialise the attributes of ComplexNumberGenerator that are defined in
the base class, the constructor of the base class must be called by the constructor
of the derived class. Implementing this is trivial and can be accomplished by using
member-list initialisation. The implementation of the constructor is given by:

ComplexNumberGenerator : : ComplexNumberGenerator () : NumberGenerator ()

{
}

Primitive operation implementation
Notice the memory management applied to the array of values derived from the
base class in the code for the primitive operations of the template method for
the ComplexNumberGenerator given below. As complex number is implemented
in terms of the cartesian co-ordinate system, it is necessary that the generator for
complex number class does the conversion of polar to cartesian.

Numberx ComplexNumberGenerator :: generateNumber ()

{

if (size = 0) {

value = new double[2];
value [0] = 0;

value [1] = 0;

size = 2;

}

if (isCartesian())
return new ComplexNumber(value [0],value[1]);
else
return new ComplexNumber(value [0]* cos(value[l]),
value [0]*sin (value [1]));

}s

void ComplexNumberGenerator :: setValue (doublex arr ,int size) {
if (this—>size != 0) {
delete []| value;
this—size = 0;

}

value = new double]|size |;

value [0] = arr [0];
value [1] = arr[1];
this—>size = size;

}s

4.5.2 Main program

An example of a test program is given. Notice that the responsibility of deleting objects
of Number is left to the client of the factory method. It is also important to note that
the client never directly instantiates an object of ComplexNumber, it is the job of the
corresponding generator to do so. It is a good habit to ensure that all heap memory is
deallocated in the reverse order of allocation.

int main ()

{

doublex valueList;

valueList = new double[2];
valueList [0] = 3;
valueList [1] = §;

NumberGeneratorx factory = new ComplexNumberGenerator ();

Number* one = 0;
Numberx two = 0;
one = factory —nextNumber ();

one—>print ();

10

factory —>toggleCoordSystem ();

factory —>setValue (valueList ,2);
two = factory —>nextNumber ();

one—>print ();
two—>print ();

delete two;
delete one;

delete factory;
delete [] valuelist;

return 0;

4.6 Exercises

1. Consider the class diagram presented in Figure [5| and answer the questions that

follow:
ChocolateMaker Chocolate
+make() : Chocolate * -mingredient : Ingredient”
#makelngredient() : Ingredient * -mWrap : Wrap*
#makeWrap(: Wrap * +Chocolate)
+~Chocolatef)
Jiy Jiy +addingredient(ingredient : Ingredient *) : void
+wrapChocolateiwrap : Wrap *) : void
+description{) : string
0.1 |-mingredient 0.1 | mWrap
C. ICh]] PeanutChocolateMaker Ingredient Wrap
#makelngredient() : Ingredient * #mak elngredient() : Ingredient * +namef) : string +namef) - string
#makeWrap() : Wrap * #makeWrap() : Wrap *
T T T T A
l l l l
l l l l
i i i i
l l l l
i i i i
l l l l
i i i i
l l l l
X X X X Caramelingredient Peanutingredient CaramelWrap PeanutWrap
| | | | +name() : string +name() : string +name() : string +namel) : string
l l l l
i i P N N A A
X X X X | | | |
| | | | l l l l
| | | e mmm oo bmm e e e - i l l
\ \ \ i i i
L | ! | |
[T~~~ ~-—~=--———=-—-——
| | l l
I I ' '
: I_ __ e 1
| l
| I

Figure 5: Chocolate Factory

11

(a) Identify the participants.
(b) Has a template method been used in combination with the factory method?

(c) Write a client program that makes use of this factory method hierarchy.

2. Combine the Memento implementation with the Factory Method implementation
discussed here. Hint: You should adapt the memento to internalise the state of any
number object.

References

[1] Gaddis T (2012) Starting out with C++: from control structures through objects.
Pearson Education, seventh edn.

[2] Gamma E, Helm R, Johnson R, and Vlissides J (1995) Design patterns: elements of
reusable object-oriented software. Reading, Mass: Addison-Wesley.

[3] Wikipedia (2011). Factory method pattern — Wikipedia, The Free Encyclopedia.
[Online; accessed 10 August 2011].
URL http://en.wikipedia.org/w/index.php?title=Factory_method_pattern

12

http://en.wikipedia.org/w/index.php?title=Factory_method_pattern

	Introduction
	Programming preliminaries
	Constructors
	Destructors
	An example

	Factory Method Pattern
	Identification
	Structure
	Problem
	Participants

	Factory Method Pattern Explained
	Clarification
	Code improvements achieved
	Implementation Issues
	Common Misconceptions
	Related Patterns

	Example
	Implementation notes
	Main program

	Exercises
	References

