
Using image steganography for decryptor distribution

T. Morkel
1
,

J.H.P. Eloff

 2
, M.S. Olivier

 3

Information and Computer Security Architecture (ICSA) Research Group

Department of Computer Science, University of Pretoria, 0002, Pretoria, South Africa

{tmorkel, eloff, molivier}@cs.up.ac.za

Abstract. When communicating secret information there is more than one route to

follow to ensure the confidentiality of the message being transmitted. Encryption

might be an obvious choice; however there are limitations and disadvantages to using

encryption. An alternative approach is steganography, which is a technology for

hiding information in other information. Combining the two disciplines may provide

better security but more overhead, since the receiver must now have knowledge not

only of how the information was encrypted, but also of how it was hidden, in order to

retrieve the message. This paper proposes a system where image steganography is

combined with encryption by hiding not only a message inside an image, but also the

means to extract and decrypt the message. An executable program is hidden inside

the image that functions as a decryptor, enabling the receiver to be oblivious to the

encryption algorithm used.

1 Introduction

Encryption enables private communication by scrambling a message in such a way that it

can only be recovered by using an appropriate decryption program in combination with an

appropriate key. Encryption, however, suffers from a number of drawbacks – notably the

fact that the mere presence of an encrypted message might be cause for suspicion.

Another drawback of encryption is the limitations that have been enforced by certain

governments [1]. The use of encryption – and even the possession of an encryption

algorithm – is illegal for ordinary citizens in some countries. This often implies that a

traveler has to delete any encryption software when entering a country and is only allowed

to acquire and install it again after leaving that country. Additional issues of encryption

often imply that the receiver needs a number of decryptors and may have to occasionally

get rid of them and reinstall them. People who wish to communicate in secret must thus

find alternative ways of doing so.

Steganography, a technology used for hiding information in other information [2], is one

such way. While steganography and encryption have their separate drawbacks,

combining them result in a system that builds on the benefits of both. By first encrypting

information and then embedding it inside an image, steganography adds another layer of

security to encryption. An eavesdropper will first need to identify the embedded

information, then extract the information and then finally decrypt it to use the secret.

Unfortunately, there is a drawback to this combination, namely the amount of overhead.

With single encryption, as with single steganography, the receiver only has to have

knowledge of the encryption, or steganographic, algorithm used to obtain the message.

However when combining encryption and steganography, the receiver needs to not only

have knowledge of how to decrypt the information, but also of how to extract it. This

brings us to a problem similar to the cryptographic software distribution problem, where

the software needed to decrypt the message has to be communicated to the receiver along

with the encrypted message, making it harder to ensure the confidentiality of both.

This paper presents a solution to this problem by not only embedding the encrypted

message in the image, but to embed the software to decrypt the message along with it,

using steganography to distribute the decryptor on demand.

The remainder of the paper is structured as follows: Section 2 provides the reader with a

brief overview of image steganography since it is a lesser known technology than

encryption. Section 3 looks at the proposed design of the system. In Section 4 the

advantages and the potential weaknesses of the proposed system are discussed and in

Section 5 a conclusion is reached.

2 Overview of Steganography

Although many different cover mediums can be used for embedding information, images

are the most popular mainly because of the redundancy created in the way that digital

images are stored. In an environment where the Internet is used, images are also a

common multimedia format, making it an ideal carrier for information, while reducing

suspicion.

Image steganography techniques can be divided into two groups: those in the Image

domain and those in the Transform domain [3]. Image – also known as spatial – domain

techniques embed information in the intensity of the pixels directly and encompass bit-

wise methods that apply bit insertion and noise manipulation.

For the Transform – also known as frequency – domain, images are first transformed, then

the message is embedded in the image and they involve the manipulation of algorithms

and image transforms [4]. These methods hide information in more significant areas of

the cover image, making it more robust [5].

The simplest and most common technique for embedding information in images is called

the Least Significant Bit (LSB) technique [6]. The least significant bit (the 8
th

 bit) of

some or all of the bytes inside an image is replaced with a bit from the secret message.

When using a 24-bit image, a bit of each of the red, green and blue colour components can

be used, since they are each represented as a byte. In other words, one can store 3 bits in

each pixel. For example, 3 pixels from a 24-bit image can be as follows:

(00101101 00011100 11011100)

(10100110 11000100 00001100)

(11010010 10101101 01100011)

When the number 200, which binary representation is 11001000, is embedded into the

least significant bits of this part of the image, the resulting pixels are as follows:
(00101101 00011101 11011100)

(10100110 11000101 00001100)

(11010010 10101100 01100011)

Although the number was embedded into the first 8 bytes of the grid, only the 3

underlined bits needed to be changed according to the embedded message. On average,

only half of the bits in an image will need to be modified to hide a secret message using

the maximum cover size [7]. Since there are 256 possible intensities of each primary

colour, changing the LSB of a pixel results in small changes in the intensity of the

colours. These changes cannot be perceived by the human eye - thus the message is

successfully hidden.

3 System Design

The basic idea behind the proposed approach is to use steganography as a means of

communicating secret, encrypted information along with the decryptor program.

3.1 System Specification

The system is divided into two phases: the embedding phase and the extracting phase.

Embedding Phase. The embedding phase is responsible for encrypting the secret

message and embedding it into the image. Although any steganographic algorithm can be

used, for the purposes of this research LSB will be used as an example together with the

bitmap (.BMP) image file format. Knowledge of the encryption algorithm used is not

imperative at this stage of the discussion.

The system consists of four algorithms. These algorithms are shown in Fig. 1. The first

algorithm, the message-encryption algorithm, is simply used for encrypting the message

and depends entirely on the encryption algorithm used.

The message-extraction algorithm is the algorithm used to extract and decrypt the

message at the receiver’s end. This algorithm is not explicitly used in the embedding

phase, but has to be embedded into the image along with the message. This algorithm can

either be in source code or converted to an executable (.EXE) program. There are

advantages and disadvantages to both approaches that will be discussed later on in the

paper.

BMP
image

Message-encryption
algorithm

Secret message

Encrypted message

LSB-embedding
algorithm

Stego
image

LSB-extraction
algorithm

Message-extraction
algorithm program

Encrypted secret
message

Secret message

EMBEDDING

EXTRACTING

Message-extraction
algorithm program

Fig. 1. System Design

The third algorithm, the LSB-embedding algorithm is used to hide the encrypted message

along with the message-extraction algorithm. An inverted version of the LSB-embedding

algorithm, the LSB-extraction algorithm, has to be communicated to the receiver through

secure channels.

A specific format is specified for embedding information in the LSB-embedding

algorithm.
<filename.extension>$<4 bytes program size embedded in 32

bytes><message-extraction algorithm program>

• The first 52 bytes of a BMP image consists of header data and cannot be

modified

• The receiver will need to execute this program and since he will have no

knowledge of the type of file beforehand, his ability to do so will directly

depend on the inclusion of the filename and format. For this reason, after the

first 52 bytes of the image, the filename of the embedded program, with special

regard to the file extension, is hidden. Using LSB the embedding of the

filename will start in the 53
rd

 byte and continue in the following sequential

bytes.

• The filename is followed by a dollar sign to indicate the end of the filename

• Since the receiver is unaware of the type of information to expect, he will also

have no knowledge of the amount of information to extract. For this reason 4

bytes are used for storing the size of the message-extraction algorithm. If an

attempt is made to extract more information than is actually embedded, the

embedded program will not be able to execute accurately.

• Finally the message-extraction algorithm is embedded

LSB-embedding-algorithm. Let I be the carrier image with I' the image converted into

binary. Each pixel in I is denoted as I'i with i the pixel number. Each pixel consists

of three colour components denoted as I'i,RED, I'i,GREEN and I'i,BLUE.

Let S be the secret message, converted into binary, S', and encrypted using the

message-encryption algorithm resulting in E(S').

Let P be the message-extraction algorithm program, converted into binary, P' with

each bit denoted as P'x where x is the bit number.

Let N be the filename of the message-extraction algorithm program, converted into

binary N' with each bit denoted as N'y, where y is the bit number

Calculate the size of the program P' in bits, denoted as F and converted into binary,

F'

Set the value of i to 53 and For each bit in N'

Replace the LSB of the next pixel’s I'i three bytes as follows

Replace the LSB of I'i,RED with a bit from N'

Replace the LSB of I'i,GREEN with a following bit from N'

Replace the LSB of I'i,BLUE with a following bit from N'

Increment i

Convert the $ sign into binary, D'

For the next 8 bytes of I'

Replace the LSB of the next byte in I' with a bit from D'

For the next 32 bytes of I'

Replace the LSB of the next byte in I' with a bit from F'

While not the end-of-file of P'

Replace the LSB of the next byte in I' with a bit from P'

While not the end-of-file of E(S')

.

. (depends on the manner in which E(S') is hidden)

.

After the message-extraction algorithm is embedded, the message can be embedded in a

number of different ways. The least secure way would be to continue from the last byte

of the message-extraction algorithm, since it would make the message easier to locate in

the event of discovery of the decryptor program. If someone were to uncover the

program, it would not necessary mean that they would suspect that there is more

information embedded in the image. It would thus be wiser to use a different method to

embed the secret message. One can either start embedding from the end of the image, or

use selective LSB and only use a predetermined sequence of bytes. There are more

possibilities that can be explored.

Extracting Phase. At the receiver’s end, the extracting phase is where the program is

extracted and executed to extract and decrypt the message. Two of the four algorithms

are used in the extracting phase.

Using the LSB-extraction algorithm obtained from the sender, the message-extraction

algorithm is retrieved from the image and stored in the appropriate file. Depending on

whether the program is in source code or an executable program, the program can either

be compiled and executed or simply executed. The program will receive the

communicated image as input, locate and extract the message bits, and decrypt it.

LSB-extraction algorithm. Using the same definitions as the LSB-embedding algorithm,

the following:

Set the value of i to 53

While Ny is not the $ character

Read in the LSBs of 8 bytes of I' at a time

Convert the bits into ASCII and store in Ny

For the next 32 bytes

Read in the LSBs of a byte of I', store it in F' and convert it into an integer

number F

While F >= 0 do

Read in the LSBs of 8 bytes of I' at a time

Convert the bits into ASCII and store in Px

 Save P in a file called N

3.2 System Considerations

The efficiency and functionality of the system can be measured with regards to invisibility

and payload capacity. Invisibility being the first and foremost requirement since the

strength of a steganographic system lies in its ability to be unnoticed by the human eye

[8]. The invisibility of the system will depend entirely on the steganographic algorithm

used, since some algorithms are more successful at unperceivable data hiding than others.

Payload capacity is the amount of data that can be stored in an image [8]. This is

especially important in deciding which encryption algorithm to implement, since a very

complex algorithm would result in a large program file that would not be able to fit into

an image of reasonable size.

3.3 Prototype construction

Several prototypes were developed to implement the proposed system. Usually simple

encryption algorithms were used, since the prototypes were developed to test the

feasibility of implementing the proposed system and not the strength of the encryption. A

comparison of two example prototype implementation is given in Table 1.

Table 1. Comparison of prototype implementations

Embedded

program

Embedded

program

function

Message

size

Encryption Embedded

program

size

Minimum

image

size

Payload

capacity

Project

A

Java class Used for

message

encryption

and

decryption

150

bytes

Built-in

DES

function

4.6 KB 118 KB

(200 x

200

pixels)

4%

Project

B

Java class Used for

message

extraction

and

decryption

150

bytes

Permutation

and XOR

2.8 KB 30 KB

(100 x

100

pixels)

9%

3.4 Source code or executable program?

Whether the embedded code has to be source code or an executable program, will depend

on a number of factors. The advantages and disadvantages for use in the proposed system

will need to be investigated.

When using source code, the receiver will be able to examine the embedded program.

This could be useful when the sender wishes to communicate not only the message but

also a specific encryption algorithm that he might want to use for future communications.

This would mean that the sender need not send the decryptor program to a specific party

in every following communication.

Another advantage for the receiver being able to examine the source code before

executing it, is that there is always the possibility that the program in the image originates

from a malevolent sender that might embed a malicious program in the image. When the

program is an executable the receiver has no option but to blindly execute the program,

having no idea what the program will do to his computer. The solution to this is a trust

issue and will amount to the receiver trusting that the sender has not included any code

that might damage his computer system. Alternatively a similar approach to a Java

sandbox can be used to ensure that executable code does not gain access to the receiver’s

computer resources [9].

Depending on the programming language and compiler used, it is a very complicated task

to decompile an executable program, in other words to retrieve the original source code

from an executable program [10]. This can be made even more difficult when using code

obfuscation, which is a technique for deliberately making source code difficult to read

[11]. Should the nature of the sender/receiver relationship call for the confidentiality of

the encryption algorithm itself, an executable program would be more suitable. All the

receiver can do is to execute the program and receive the decrypted message, without

being able to gain knowledge of how the message was encrypted or decrypted.

The risk of discovery also plays a role in deciding whether to embed source code or an

executable program in the image. Due to its nature, executable code gives the impression

of being more like random data than source code, making it more difficult to notice

should someone be looking for hidden information. Source code, being a close

resemblance to natural language, is more prone to statistical attacks.

Finally an advantage of using an executable program over using source code is concerned

with platform independence. An executable program will be able to execute on any

platform, while some platforms might not be able to compile and execute certain source

code. Along the same lines, communicating source code to a receiver is based on the

assumption that the receiver actually possesses the correct compiler software to compile

and execute the source code. This might not always be the case.

4 Advantages and Potential Weaknesses of the Proposed System

The concept of combining encryption with steganography in such a way to hide not only

an encrypted message in an image, but also the decryptor program, holds many

advantages over other forms of secret information communication. Unfortunately there

are also potential weaknesses to the system.

4.1 Advantages of the Proposed System

The main advantage that the proposed system offers is by combining encryption and

steganography you also combine their individual benefits. Cryptography mainly provides

confidentiality to secret information, but can also provide authentication and

nonrepudiation in some cases [12]. Steganography can also provide confidentiality of

information, as well as privacy [13]. Steganography also provides security through

obscurity, not always a good thing, but can be seen as a positive aspect in this case, since

it is not the only means of security [14]. Importantly the proposed system provides a way

of combining the two disciplines without increasing the amount of overhead used from the

amount of overhead that a single encryption, or steganography, transaction would require.

A rather debatable advantage is that the proposed system makes provision for the use of

proprietary encryption algorithms. Proprietary encryption algorithms are in most cases

considered to be weak [15], since many get compromised due to inefficient algorithms.

This aspect set aside, there are still many companies and individuals that prefer to use

their own proprietary encryption algorithms to standard encryption algorithms. In the

proposed system the fact that the algorithm is hidden inside the image increases the

security of the algorithm and makes the distribution of the decryptor software more

secure.

Another advantage of the proposed system is that it applies the diversity of defense

concept [14], since it makes use of various layers of security. A lower security level

steganographic algorithm can be used to embed the program and a higher security level

steganographic algorithms can be used to embed the message.

4.2 Potential weaknesses of the proposed system

The first and most obvious risk to the proposed system is the fact that the decryptor and

the encrypted message are stored in close proximity to one another. There are two

possible solutions to this potential problem: Firstly one can divide the decryptor and the

message between two different images. Embed the decryptor program in one image and

embed the encrypted message in another and communicate them separately. As long as

the decryptor program is capable of extracting and decrypting the message from the

separate image file, the system will still function correctly. The second solution is to

make use of cryptographic keys in the encryption of the message. Should someone try to

execute the decryptor he will still need the secret key. Both of these solutions however

will create more overhead, since more information needs to be communicated beforehand.

Another potential weakness lies in the way that the filename and file size are stored.

Should an executable program be used for reasons of randomness, the filename and file

size will still need to be in plaintext. This could provide valuable insight to an attacker

who is trying to figure out what the true purpose of the hidden information is. A possible

solution to the problem is to first encrypt at least the filename with a different encryption

algorithm before it is embedded into the image. This approach however will create more

overhead since the receiver must now again have knowledge of the encryption algorithm

used in order to decrypt the filename.

Ultimately there exists a trade-off between the amount of overhead involved and the

amount of security. More security could mean more unnecessary overhead, while less

overhead will result in less security. It will ultimately depend on the desired level of

security.

5 Conclusion

In trying to overcome the limitations that both encryption and steganography entail, a

system is proposed that combines the two technologies in such a way as to minimise the

amount of overhead used. This is done by embedding the decryptor program in the image

along with the encrypted message.

The advantages that this approach offer include confidentiality and privacy of not only the

secret message, but also potentially of the encryption algorithm. This results in other

benefits that can be obtained, for example the secure use of proprietary encryption

algorithms.

There are potential weaknesses to the system – most of their solutions include more

overhead – and this brings about a trade-off between overhead and security. Ultimately,

in whatever way the problems are dealt with, the proposed system will still involve less

overhead than any similar security level combination of encryption and steganography.

References

[1] Dunbar, B., “Steganographic techniques and their use in an Open-Systems

environment”, SANS Institute, January 2002

[2] Jamil, T., “Steganography: The art of hiding information is plain sight”, IEEE

Potentials, 18:01, 1999

[3] Silman, J., “Steganography and Steganalysis: An Overview”, SANS Institute,

2001

[4] Johnson, N.F. & Jajodia, S., “Steganalysis of Images Created Using Current

Steganography Software”, Proceedings of the 2
nd

 Information Hiding Workshop,

April 1998

[5] Wang, H & Wang, S, “Cyber warfare: Steganography vs. Steganalysis”,

Communications of the ACM, 47:10, October 2004

[6] Johnson, N.F. & Jajodia, S., “Steganalysis: The Investigation of Hidden

Information”, Proceedings of the IEEE Information Technology Conference,

1998

[7] Krenn, R., “Steganography and Steganalysis”, http://www.krenn.nl/univ/cry/steg/

article.pdf

[8] Morkel, T., Eloff, J.H.P. & Olivier, M.S., “An overview of Image

Steganography”, Proceedings of the Information Security South Africa (ISSA)

Conference, 2005

[9] Rubin, A.D. & Geer, D.E., “Mobile Code Security”, IEEE Internet Journal,

December 1998

[10] Linn, C. & Debray, S., “Obfuscation of Executable Code to Improve Resistance

to Static Disassembly”, Proceedings of the 10
th

 ACM Conference on Computer

and Communications Security, 2003

[11] “Obfuscated code”, Wikipedia online encyclopedia, http://www.wikipedia.org/

wiki/Obfuscated_code, accessed on 6 July 2007

[12] Tudor, J.K., “Information Security Architecture: An Integrated Approach to

Security in the Organization”, Auerbach Publications, 2001, book

[13] Artz, D., “Digital Steganography: Hiding Data within Data”, IEEE Internet

Computing Journal, June 2001

[14] Conklin, A., White, G.B., Cothren, C., Williams, D. & Davis, R.L., “Principles

of Computer Security: Security+ and Beyond”, McGraw-Hill Technology

Education, 2004, book

[15] Schneier, B., “Security in the Real World: How to Evaluate Security

Technology”, Computer Security Journal, Number 4, 1999

