
Research Article

An Access Control Architecture for XML documents in

workflow environments

R Bothaa J Eloffb

aFaculty of Computer Studies, Port Elizabeth Technikon, Port Elizabeth
rbotha@computer.org

bDepartment of Computer Science, Rand Afrikaans University, Johannesburg

eloff@rkw.rau.ac.za

Abstract

The eXtensible Markup Language (XML) are being upheld as having the potential to change the way business is
conducted. This will be effected by changing the way in which information is shared. However, with the sharing
of information, information security becomes a concern. This paper presents an access control architecture that
allows for the sharing of XML documents in workflow environments. The architecture addresses the issue of
access control from two perspectives. On the one hand, issues regarding the confidentiality of information are
addressed. On the other hand, the semantic integrity of information is attended to. The paper shows how the
access control services, provided as part of the architecture, achieve these objectives.
Keywords: systems architecture, information security, access control, workflow systems
Computing Review Categories: D2.11, D4.6, H4.1, I7.2, K6.3, K6.5

1 Introduction

The eXtensible Markup Language (XML) has had a
profound impact on the computer industry since its
proposal by the World Wide Web Consortium (W3C)
in February 1998 [15]. XML is often mistaken, by the
uninformed, as a technology. However, XML presents
a standard [4] with respect to information representa-
tion. As such, other tools and technologies make use
of the XML standard for a uniform way to transfer
and manipulate data.

XML, as its name suggests, is a markup language.
It is often discussed in the context of content markup,
content management, search engines and meta lan-
guages. XML differs from the HTML markup lan-
guage in one fundamental way – it is extensible. With
HTML, you are given a set of tags (markups) and you
are bound by the given set as you markup a document.
With XML, you “invent” the tags, so you can use
XML to markup different types of documents for very
specific purposes. Adjunct languages (e.g. XSL [1],
XPointer [9] and XLink [10]) can be used to associate
these elements to some rendering or linking semantics
for their display on different media types. This al-
lows a definite separation between the description of
the structure of the document and the description of
its representation on the respective media types. The
structure of an XML document can be dictated by
a specification in the form of a DTD [3] or an XML
Schema [11]. The resultant document can be viewed
and parsed as a hierarchical structure, referred to as
the document tree.

Since sensitive content may be contained in an
XML document, organizations that wish to utilize
XML documents must consider the information secu-
rity aspects associated with XML.

2 Information Security Aspects
of XML Documents

Information Security is often described in terms of the
five services (authentication, access control, confiden-
tiality, integrity and non-repudiation) [13] that is em-
ployed to ensure that information maintains certain
attributes, i.e. that the information stays available
and confidential while maintaining a state of integrity.

For XML documents, as with any other informa-
tion, these attributes of secure information need to
be maintained. A distinction can be made between
the protection of information while in transit and the
protection of information while at the end-points, i.e.
when it resides on the client or server machines. This
paper is not concerned with the information secu-
rity issues while the document is in transit – stan-
dard encryption and other techniques that are avail-
able within the communication technology field can
be employed in this respect. This paper will only ad-
dress the protection of XML documents while at the
end-points.

At the end-points information security require-
ments can be found in questions such as: “Who may
read this document?”, “May Sue read this part of the
document?” and “Should Tom be able to edit this

SART / SACJ, No 28, 2002 3



Research Article

document? If so, which parts of it may he edit?”. In
workflow environments these questions can all be ex-
tended with “within this context”, for example “Who
may, within this context, read the document?”.

Careful examination of questions such as the
above, yields the realization that we are concerned
with all three attributes of secure information, namely
availability, confidentiality and integrity of the infor-
mation. Briefly consider each in turn.

In so far as availability is concerned, it must be
ensured that access is governed in such a way that a
user’s work is not hampered. Strategies to achieve this
may include redundant storage techniques and other
data backup and recovery techniques. However, it also
implies that the access control service should not pro-
hibit access from authorized users. At the same time,
it is of prime importance that information is not dis-
closed to unauthorized users. In this respect the con-
cern is confidentiality of information.

Finally, the integrity of information needs to be
protected. Leyman and Roller [14] name three kinds
of integrity concerns that exist. Firstly, physical in-
tegrity is concerned with ensuring that information is
not altered during transmission and storage. This is
achieved through techniques such as checksums. Sec-
ondly, operational integrity is concerned with issues
such as concurrent updating. Thirdly, semantic in-
tegrity refers to the consistency of the information
with business rules. For example, the business rule
that states, “a person may not approve his own pur-
chase order” requires the access control service to deny
“approve” access to the initiator of the purchase order.

From the above, it is clear that the access control
service is of paramount importance when considering
the information security aspects during use of XML
documents. Consequently, it forms the focus of the
rest of this paper. The next section will discuss the
properties expected of an access control service for
XML documents in a workflow environment.

3 Access Control Requirements
for XML Documents

XML documents have a structure as specified by an
XML Schema [11] or a DTD [3]. An XML Schema
provides a richer way of expressing structure than a
DTD, but, in essence, both ways specify rules regard-
ing the relation between parts of the document. In
the light of the fact that an XML document can be
perceived as a tree structure [19], we can see this as
restrictions on the child-nodes of parent-nodes.

Consider, for example, the representation of a per-
sonnel record, depicted as an XML document and its
accompanying DTD in Figure 1. The DTD show that
elements consist out of other elements. For example,
<!ELEMENT pers_details(surname,first_name,

other_inits?,home_address)>

(a) A DTD for a personnel record
<!ELEMENT staff_member(pers_details,slary_details,

old_leave_details)>

<!ATTLIST staff_member personnel_number ID #REQUIRED>

<!ELEMENT pers_details(surname,first_name,

other_inits?,home_address)>

<!ELEMENT home_address(street, city, zip)>

<!ELEMENT salary_details(basic_pay, bonus_pay,

OTE_claim*, salary_history)>

<!ELEMENT salary_history(from_date,to_date,total_pay)>

<!ELEMENT old_leavedetails(leave_period*)>

<!ELEMENT leave_period(from_date, to_date, workdays)>

<!ELEMENT surname (#PCDATA)>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT other_inits (#PCDATA)>

<!ELEMENT home_address (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT basic_pay (#PCDATA)>

<!ELEMENT bonus_pay (#PCDATA)>

<!ELEMENT OTE_claim (#PCDATA)>

<!ELEMENT from_date (#PCDATA)>

<!ELEMENT to_date (#PCDATA)>

<!ELEMENT total_pay (#PCDATA)>

<!ELEMENT workdays (#PCDATA)>

(b) Personnel number as an XML document
<?xml version="1.0"?>

<staffmember personnel_number="emp1">

<pers_details>

<surname>Jones</surname>

<first_name>Ben</first_name>

<other_inits>GF</other_inits>

<home_address>

<street> 123 Street </street>

<city> Big City </city>

<zip> 4356 </zip>

</home_address>

</pers_details>

<salary_details>

<basic_pay> 100000 </basic_pay>

<bonus_pay> 10000 </bonus_pay>

<OTE_aim> 200000 </OTE_aim>

<salary_history> </salary_history>

</salary_details>

<old_leave_details>

<leave_period>

<from_date>10-May-2000</from_date>

<to_date>12-May-2000</to_date>

<workdays>3</workdays>

</leave_period>

<leave_period>

<from_date>16-Dec-2000</from_date>

<to_date>7-Jan-2001</to_date>

<workdays>13</workdays>

</leave_period>

</old_leave_details>

</staffmember>

Figure 1: A DTD and XML representation of a per-
sonnel record

4 SACJ / SART, No 28, 2002



Research Article

shows that pers_details consists of a surname,
first_name, other_initials and a home_address.
Note that home_address, in turn, consist out of sev-
eral elements. Elements can also have attributes, such
as staff_member who has a personnel_number. The
DTD furthermore controls the number of instances
of an element. For example, other_inits? indicates
that it is an optional element, after all, not everybody
has second names. Similarly leave_period* shows
that the element may occur zero, one or many times,
while a + would indicate that the element could occur
one or more times.

A document, such as the personnel record, con-
tains parts which are more sensitive than other parts.
An employee’s salary can be considered more sensitive
than the employee’s address, which, in turn, could be
more sensitive than his personnel number. Different
parts of the document must thus be protected in dif-
ferent ways. We can therefore state that XML docu-
ments require a fine-grained access control mechanism.

The permissions associated with access control
documents will be dependent on the semantics of the
document (or the component of the document) to
which it applies. However, permissions can be seen
as abstractions of the general actions that can be ob-
served with XML documents. All of these will be con-
nected to the creation, inspection and modification
of nodes and elements in the XML document tree.
In the personnel record example, the permission “up-
date salary” reflects the ability to replace the values
in /salary_details//@basic_pay as well as writing
historic information in the relevant part of the docu-
ments, say (among others)

{/salary_details/salary_history//@basic_pay}.

In a workflow environment these actions may not
be applicable to the same user all of the time. The
context of the task in the bigger business process will
influence the access control decision [2, 17]. For ex-
ample, after a leave application has been approved
the dates may not be changed.

We need to consider the role that XML documents
can play in a workflow environment. The next section
thus describes the environment in which we operate.

4 XML documents in the work-
flow environment

XML documents may traverse the organization for nu-
merous reasons. However, in order to provide a work-
ing context, this paper concentrates on XML docu-
ments that are propagated through a workflow man-
agement system.

Figure 2 graphically depicts the execution of a
leave application process for employee 1. It assumes
that workflow definition tools were used to define the
leave application process as input to the workflow en-
actment service. The workflow enactment service will,

on request of a user, start a new instance of a specific
workflow. Thereafter the request must be approved
by employee 1’s Manager and the Human Resource
department. In practice this would be more complex
as provision must be made for negotiating the leave
or rejecting the leave. The example is sufficient, how-
ever, to show the principles that will be described in
this paper.

For the purposes of this paper we will furthermore
assume that the workflow environment subscribes to
the general idea behind role-based access control [16].
Therefore users are associated with roles, which, in
turn, are associated with permissions. A role may
also be related to other roles according to a partial
order. Roles inherit the permissions of the roles that
are inferior to them in the partial order, whereas users
may also assume the roles that are inferior in the par-
tial order to their assigned roles. The partial order is
referred to as the role hierarchy.

Each of the tasks may involve a number of XML
documents. The task definition will specify which role
may perform the task. In environments where strict
least privilege is a requirement [2, 5] this may involve
the introduction of special roles in the role hierarchy.
Since access to these documents is restricted at a fine
granularity, permissions will be defined in terms of the
constituent components of the XML document.

Figure 2 shows how the personnel record defined
in Figure 1 is propogated, together with a leave form
during a leave application process, in order to assist
the Manager and Human Resources department with
their decision. The access control requirements to the
two XML documents change as their role in the work-
flow changes. This is considered in more detail in the
following section.

5 Controlling access to XML
documents

In the leave application example, two documents were
encountered: a leave application and a personnel
record. Consider the access control requirements of
the two documents in turn.

Firstly, the personnel record. At the “Manager
Approval” task in the workflow the personnel record
should not be edited. Even so, not all of the infor-
mation is relevant to making the decision and should,
therefore, not be viewed by the manager. An exam-
ple of this is the salary – the salary details should not
play a role in the leave decision. Since it is sensitive
information it should not be displayed at inappropri-
ate times. A similar argument holds at the “HR Ap-
proval” task in the workflow. However, at the “HR
Approval” task a portion of the personnel record that
deals with leave recording might need to be updated1.

1In practice, this would probably only happen once both
approval tasks have been completed. Furthermore, it will most

SART / SACJ, No 28, 2002 5



Research Article

Employee 1


request leave form


Manager


Human Resources


Workflow

Engine


leave9876.xml


Persistent document

store


leave9876.xml


leave9876.xml


emp1.xml


leave9876.xml

leave9876.xml


leave9876.xml


emp1.xml


Worklist handler


Request Leave

Employee


Manager

Approval

Manager


HR Approval

HR Manager


Leave Application Process

Definition


emp1.xml


Figure 2: Involving XML documents in a typical workflow environment

At that stage, however, other details such as the salary
may not be updated.

The leave form is subject to similar arguments.
When the employee requests leave, the leave form can
be updated by him. However, when the document ar-
rives at the Manager or HR, they should not be able to
edit the leave application details. They should only be
able to complete the portions that they need to com-
plete to grant approval. Once the leave is approved
the leave details should not be edited at all.

The question of how we specify what is allowed,
i.e. how we specify the permissions then comes to
mind.

5.1 Specifying permissions

A permission indicates the ability to perform some ac-
tion. With XML documents these abilities relate to
the actions that may be performed on the nodes of
the document tree. A number of observations regard-
ing the specification of access permissions are thus in
order.

Firstly note that due to the hierarchical na-
ture of the document tree, permissions can be fil-
tered down the document tree. For example, the
fact that someone must have read permission on the
<home_address> node of the XML document, implies
that the person must have read access on the child
nodes of <home_address>. However we must be able

probably be automated and not done manually. However, in
a bid to make the example more illustrative, we assume this
updating is the responsibility of HR.

to specify that a person may read <home_address>
but may not read the <street> node. We call this
permission the “view person living area” permission.
Explicit negative permissions must therefore be in-
cluded.

A permission can therefore be generalized to be a
set of actions that can be performed by a role. The
“view person living area” permission can thus be ex-
pressed as:
{(/pers_details/home_address,read,+),

(/pers_details/home_address//@street,read,-)\}

In general, a permission P is P =⋃
(node, action, sign) where node is the XPath

expression [7] identifying any node in the document
tree, action is an action that is allowable when
the sign is positive and disallowable when sign is
negative. The actions represented by action are
interdependent. For example, the action to change
implies the ability to read the current value. Table 1
summarizes possible actions on nodes in the docu-
ment tree and their relationships. Damiana et al. [8]
refined this concept to include eight authorization
types which is based on whether there is inheritance
and the type of inheritance that that permission have.

The permissions are specified in terms of the node
of the resultant tree. However, the specification will
happen once for every type of document, i.e. in XML
terms, it will happen once for each DTD or Schema
definition. XML schemas may allow the further refine-
ment of these permissions by allowing the specification
of “types” of nodes, e.g. an address type. Investi-
gation as to the specification of permission based on

6 SACJ / SART, No 28, 2002



Research Article

Action Description Implied
Read The content of the node can be viewed
Edit Change the content of node Read
Add Create a node Edit, Read
Append Create child nodes Read, Add(children nodes)
Delete Delete the node Edit, Read

Table 1: Actions on XML documents

the type of the node, rather than its position in the
document tree warrants further investigation. For the
purpose of this paper, however, this issue is considered
future work.

5.2 Administration of Access Control

If permissions are generalized as above then the ac-
cess control administration problem can easily be ad-
dressed through standard role-based access control
mechanisms such as those described in [16].

This would then involve the association of permis-
sions with roles and roles with users. Since the permis-
sions to a document change in terms of the context of
the document, the fact that a user is associated with a
permission is not a sufficient condition for access con-
trol. Specific tasks will also be associated with roles
[5]. A user will have to belong, therefore, to a role
equal or superior to the role required for the task to
be able to perform the task. The user will only receive
the permissions associated with the task.

The granting of permissions will be governed by
several architectural components in the workflow en-
vironment. The next section discusses the role that
the various architectural components play in securing
XML documents.

6 Architectural components

Figure 3 depicts the components present in the pro-
posed architecture. In order to see what the different
components’ purpose is, it is best to look at the vari-
ous activities that can take place. The activities falls
in one of two categories: reading or changing. These
two categories are discussed in paragraphs 6.2 and 6.3
respectively.

Within the architecture we can observe that XML
documents can reside either on the client or on the
server. The security mechanisms devised are based on
the premise that we cannot trust the client [18].

6.1 Building the worklist

Within a workflow environment the worklist han-
dler would be responsible for determining which users
should do what. The workflow server will, based on
the process definition and the completed tasks, deter-
mine the tasks that should occur next. These tasks
will be handed off to the worklist handler who has the

responsibility of determining who may perform those
task. The Access Control Service must, therefore, in-
terpret the defined Access Control Rules. These in-
clude separation of duty specifications [2] such as that
“an employee may not approve his own leave”.

The result of this access decision must be commu-
nicated to the users. If a “push” paradigm is followed,
the worklist handler will decide who must do the task
and inform the specific user through the worklist. If a
“pull” paradigm is followed then the worklist handler
will inform all users that may possibly do the task of
the presence of the task in their worklists. As soon
as one of the users commits to perform the task, the
notification of the task will be removed from the other
users’ worklists.

The first level of access control is thus inherent
to the workflow environment in that only users who
should perform the task will know of the existence of
the task. However, when a user performs the task,
i.e. acts on the item in the worklist a further level of
access control is required. The decisions that must be
made can be stated as the questions “What may the
user see?” and “What may the user change?”. These
two questions are addressed in paragraphs 6.2 and 6.3
respectively.

6.2 Restricting what the user may see

Since an XML document may contain information of
various degrees of sensitivity, the complete document
will seldomly be used as is. For example, in the leave
application cited, the salary details may not play a
role in granting/disallowing the leave.

Figure 3 shows that the Access Control Service
within the worklist handler is going to be reponsi-
ble for retrieving the XML document from the XML
document store. The Access Control Service will dy-
namically create an XSL style sheet [6] (based on the
task definition) that would allow for the pruning of
the document tree by a parser application. Damiani
et al. [8] explain the “pruning” of an XML document
tree in detail. The pruned document will only contain
the information which is relevant to that step in the
workflow. The document can then be transferred to
the client, whereafter the client will display the doc-
ument in its browser interface, possibly based on an
existing style sheet. At that stage no sensitive in-
formation resides on the client as the document was
pruned appropriately on the server. In this respect

SART / SACJ, No 28, 2002 7



Research Article

Web-enabled 
Worklist Handler


Workflow Server
 is responsible for determining

the routing of information between participants in


the organization


XML Document Store


Parser for

transformation


Servlet

responsible for

modifications


Client-side technologies


Server-side technologies


DTD or XML

Schema


definitions


Client browser interface


Editing functionality

provided through an


Applet


Presentation

according to XSL


style sheet


Access

Control

Service


Process definition tools

are used to define the


workflow.


Access Control Rules

Expression


XSL Style Sheet

for transformation


Figure 3: Architecture for controlling access to XML documents

<?xml version="1.0"?>

<staffmember personnel_number="emp1">

<pers_details>

<surname>Jones</surname>

<first_name>Ben</first_name>

<other_inits>GF</other_inits>

</pers_details>

<old_leave_details>

<leave_period>

<start>10-May-2000</start>

<end>12-May-2000</end>

<workdays>3</workdays>

</leave_period>

<leave_period>

<start>16-Dec-2000</start>

<end>7-Jan-2001</end>

<workdays>13</workdays>

</leave_period>

</old_leave_details>

</staffmember>

Figure 4: The XML personnel record after transfor-
mation

we therefore don’t have to worry about trusting the
client application and execution environment for not
making sensitive information available.

6.3 Updating the documents

The contents of the XML document need to change
during the workflow. In the discussed example the

leave form must be completed by the employee, then
it must be approved (or not) by the Manager and HR.
All of these activities require the documents to be up-
dated. However, different parts of the document are
being edited at different times. For example, when
the document is being approved by the Manager, he
should not be able to edit the leave application dates.

Updating the information on the server requires
the client to send the data to the server. The client
will render the HTML either as a HTML form [12] or
display it through an applet. The applet option is de-
picted in Figure 3. The applet approach allows client
side validations to occur. However, due to the untrust-
worthy nature of clients, these checks will have to be
repeated on the server. Either way, the information
will be sent to the server.

As mentioned the server will have to check that
the XML document that arrives adheres to the DTD
or Schema definition. Not only should it conform to
the structure, but the resultant document should be
compared with the original document to confirm that
only nodes which should have been updated were up-
dated, i.e. that the client application sent expected
information. Experienced hackers will find it easy to
alter messages on the client side [18]. Once this have
been confirmed, the XML document that arrived at
the server (which represents a pruned version of the
original) must be merged with the original document

8 SACJ / SART, No 28, 2002



Research Article

and the updated version stored in the persistent doc-
ument store for future use. This logic is embedded in
the architecture in the “Servlet responsible for mod-
ifications” component. Although the term servlet is
used, it may also be achieved through other server side
technologies such as CGI scripting or ASP scripting.

The updating of information requires careful con-
sideration as to the likelihood of information being al-
tered on the client. The server side component that is
responsible for validating the updates is thus of prin-
ciple importance.

7 Conclusion

The architecture that was proposed here aims to en-
sure the availability, confidentiality and integrity of
the XML documents. In particular, it addresses these
needs from an access control perspective.

Availability is addressed through the inclusion of
a persistent XML document store. However, the ac-
cess control service will limit access to the documents
based on the task to be performed. From a practical
perspective it will occasionally be difficult to predict
which document will be referred to during a specific
task. It is, however, reasonable to assume that those
documents will only be read and not updated.

It was shown that confidentiality can be achieved
through pruning the XML document tree on the
server. This ensures that no unnecessary and possi-
bly sensitive information is displayed. For documents
which must be available for continual reference at un-
predictable times, a default pruning process that re-
moves all possible sensitive information may thus take
place. The architecture is therefore quite capable of
ensuring that information is readily available, yet in a
confidential manner.

Information will retain its semantic integrity. This
is partially due to the reliance on the workflow systems
to make the information available for update only
when it should be updated. The server side check-
ing that updates were in line with expectations adds
a further degree of confidence that semantic integrity
will remain intact.

Semantic integrity can still be at risk if the data
that were expected to be edited is edited inappropri-
ately. Technology solutions to this is not possible as
human error will always play a role where information
is being captured. This of course allows for experi-
enced hackers to introduce errors that appear to be
human errors. This is possible since messages can still
be altered by client-based methods. However, the like-
lihood of this is greatly reduced through applying the
proposed architectural principles.

Consider, for example, the inappropriate changes
of salaries. A client-side attack is only possible when
the salary must actually be edited, for example, during
a salary review. At all other times any message that

contains an updated XML document will be validated
by the server against what should have been edited
and inappropriate changes will be rejected.

In the proposed architecture the worklist handler
has more functionality than what would typically be
the case in a workflow environment where the docu-
ments are non-XML. This is due to the fact that the
worklist handler does not (and, in most cases, cannot)
concern itself with the contents of the document ob-
jects. However, considering the much finer granularity
at which protection occurs the extra cost incurred is
not significant.

The architecture presents several opportunities for
further investigation and refinement of techniques em-
ployed. The following aspects require further atten-
tion.

The work reported on in this paper only relied
on DTDs to express structure. The influence of the
more powerful XML Schemas on the specification of
access permissions must be considered. XML Schemas
allow, for example, the specification of custom types
which may influence how we wish to express access
permissions.

The development of tools to support this type of
architecture must also receive attention. As future
work a generic forms handler that subscribes to the
techniques required will be developed. Furthermore,
a toolset to allow for the easy specification of access
permissions is required.

It is believed that this architecture provides an
excellent foundation for further work. The architec-
ture contributes to the understanding of information
security and, in particular, the dynamic access control
needs in an internet-based workflow environment.

References

[1] S. Adler et al. Extensible Stylesheet Language (XSL)
Version 1.0. W3C Candidate Recommendation,
http://www.w3.org/TR/2000/CR-xsl-20001121,
2000.

[2] R. A. Botha and J. H. P. Eloff. Separation of duties for
access control enforcement in workflow environments.
IBM Systems Journal, 40(3), 2001. to appear.

[3] T. Bray, J. Paoli, and C. Sperberg-McQueen, editors.
Extensible Markup Language (XML) 1.0. W3C Rec-
ommendation, http://www.w3.org/TR/1998/REC-
xml-19980210, 1998.

[4] T. Bray, J. Paoli, C. Sperberg-McQueen, and
E. Maler, editors. Extensible Markup Language
(XML) 1.0 (Second Edition). W3C Recom-
mendation, http://www.w3.org/TR/2000/REC-xml-
20001006, 2000.

[5] D. G. Cholewka, R. A. Botha, and J. H. P. Eloff. A
context-sensitive access control model and prototype
implementation. In S. Qing and J. H. P. Eloff, edi-
tors, Information Security for Global Information In-
frastructures: IFIP TC 11 Sixteenth Annual Working
Conference on Information Security, pages 341–350,
Beijing, China, 22–24 Aug 2000. Kluwer Academic
Publishers.

SART / SACJ, No 28, 2002 9



Research Article

[6] J. Clark, editor. XSL Transformations
(XSLT) Version 1.0. W3C Recommendation,
http://www.w3.org/TR/1999/REC-xslt-19991116,
1999.

[7] J. Clark and S. DeRose, editors. XML Path
Language (XPath) Version 1.0. W3C Rec-
ommendation, http://www.w3.org/TR/1999/REC-
xpath-19991116, 1999.

[8] E. Damiani, S. de Capitani di Vimercati, S. Para-
boschi, and P. Samarati. Securing XML documents.
In C. Zaniolo, P. C. Lockemann, M. H. Scholl, and
T. Grust, editors, Proceedings of the 6th International
Conference on Extending Database Technology: Ad-
vances in Database Technology - EDBT 2000, volume
1777 of Lecture Notes in Computer Science, pages
121–135, Konstanz, Germany, 27–31 March 2000.
Springer.

[9] S. DeRose, E. Maler, and R. Daniel, Jr, ed-
itors. XML Pointer Language (XPointer)
Version 1.0. W3C Last Call Working Draft,
http://www.w3.org/TR/2001/WD-xptr-20010108,
2001.

[10] S. DeRose, E. Maller, and D. Orchard, edi-
tors. XML Linking Language (XLink) Ver-
sion 1.0. W3C Proposed Recommendation,
http://www.w3.org/TR/2000/PR-xlink-20001220,
2000.

[11] D. C. Fallside, editor. XML Schema Part
0: Primer. W3C Candidate Recommenda-
tion, http://www.w3.org/TR/2000/CR-xmlschema-
0-20001024, 2000.

[12] M. Floyd. Building Web Sites with XML. The Charles
F. Goldfarb Series on Open Information Management.
Prentice Hall PTR, Upper Saddle River, NJ, 2000.

[13] ISO 7498-2: Information Processing Systems — Open
System Interconnection — Basic Reference Model –
Part 2: Security Architecture, 1989.

[14] F. Leyman and D. Roller. Production Workflow: Con-
cepts and Techniques. Prentice–Hall, 2000.

[15] J. Roy and A. Ramanujan. XML: Data’s Universal
Language. IT Pro, 2(3):32–36, May 2000.

[16] R. S. Sandhu, E. J. Coyne, H. L. Fenstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, Feb 1996.

[17] R. Thomas and R. Sandhu. Task-based authoriza-
tion controls (TBAC): A family of models for ac-
tive and enterprise-oriented authorization manage-
ment. In T. Lin and S. Qian, editors, Database Secu-
tity, XI: Status and Prospects – Results of the IFIP
WG11.3 Workshop on Database Security, pages 166–
181. Chapman and Hall, 1997.

[18] J. Viega, T. Kohno, and B. Potter. Trust (and mis-
trust) in secure applications. Communications of the
ACM, 44(2):31 – 36, Feb 2001.

[19] L. Wood et al., editors. Document Object Model
(DOM) Level 1 Specification - Version 1.0. W3C Rec-
ommendation, http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001, 1998.

10 SACJ / SART, No 28, 2002


