Computers & Security Vol.20, No.6, pp.525-532, 2001
Copyright © 2001 Elsevier Science Limited

Printed in Great Britain. All rights reserved
0167-4048/01$20.00

Access Control in Document-
centric Workflow Systems —
An Agent-based Approach

Reinhardt A. Botha' and Jan H.P. Eloff2

T Faculty of Computer Studies, Port Elizabeth Technikon, Port Elizabeth, South Africa, e-mail: rbotha@computer.org
2Department of Computer Science, Rand Afrikaans University, Johannesburg, South Africa, e-mail: eloff@rkw.rau.ac.za

Workflow Systems are increasingly being used to streamline orga-
nizations’ business processes. During the execution of business pro-
cesses, information often traverses organizations’ networks as docu-
ments. With the proliferation of the Internet, documents travel
across open networks. These documents can, however, contain
potentially sensitive information. The documents used in Workflow
Systems must therefore be protected from unauthorized access.

This paper enumerates three access control requirements of work-
flow environments, including the well-known principle of separa-
tion of duty. Thereafter the CSAC (Context-sensitive Access
Control) model is presented to address the requirements. In con-
clusion it is demonstrated how this model can be implemented in
an agent-based architecture.

Introduction

Workflow Systems increasingly use the Internet as the
underlying communications infrastructure. With the
implementation of Workflow Systems, organizations
target their core business processes in order to get a
return on investment as fast as possible. These process-
es often deal with sensitive information. Consequently
serious information security concerns are raised.

Similar to other systems, the information security
requirements of Workflow Systems are modelled
according to the five security services suggested by
ISO 7498-2. [3][6] These five services are: identifica-
tion and authentication, access control, confidentiality,
integrity and non-repudiation. To secure a Workflow

System effectively, mechanisms for each of these
services must be employed.

Three of these services, namely identification and
authentication, confidentiality and non-repudiation
are implemented similarly in Workflow and non-
Workflow Systems. However, the access control ser-
vice and integrity service require special attention.
This paper primarily addresses access control.
However, it can be argued that the access control ser-
vice assist with integrity in the sense that it prevents
unauthorized users from changing the data.

In Workflow Systems, the access control requirements
must be expressed based on the types of tasks that must
be performed on the information objects that require
protection. Documents are the most common way
through which information in an organization is com-
municated. In order to develop an access control model
for Workflow Systems, the access control requirements
of the Workflow Systems need to be established.

Access Control Requirements of
Workflow Systems

Various authors identified that Workflow Systems have
special access control requirements. [1][2][5] For the

0167-4048/01$20.00 © 2001 Elsevier Science Ltd. All rights reserved 525

Access Control in Document-centric Workflow Systems/Reinhardt A.

Botha and Jan H.P Eloff

purposes of this paper, the access control requirements
of Workflow Systems are described through three
properties.

Property 1: Strict least privilege. The concept
of least privilege acknowledges that users should
only receive access permissions that are in line
with their job responsibilities. It does, however, not
recognize that those permissions may at specific
times be inappropriate and unnecessary. For exam-
ple, a manager who initializes a purchase order
should not, at the initialization stage, receive the
permission to approve the purchase order. At a
later stage, however, the manager may indeed
receive the permission to approve a purchase
order. Strict least privilege involves the strengthen-
ing of the least privilege concept in that it distin-
guishes between a person’s job and the tasks that a
person must fulfil as part of his job. Strict least
privilege therefore states that a user should receive
the smallest possible set of permissions for the cur-
rent task within the business process.

Property 2: Sequence of events. Certain per-
missions can be granted only once others have
been exercised. The event of granting a specific
permission may thus depend on the completion of
another task, i.e. the exercising of other permis-
sions. For example, an order cannot be approved
until filled out completely; similarly, once an order
has been approved, it may not be re-edited.
Property 3: Separation of duty. Separation of
duty has as its primary objective the prevention of
fraud and errors, thus ensuring the semantic
integrity of business information. Separation of
duty requirements are often formulated as busi-
ness rules such as: “a person may not approve
his own purchase order” or: “a cheque requires
two different signatures.” In this case, the access
control service should be sensitive to the access
history of the relevant objects and appropriately
disallow access.

The remainder of the paper is structured as follows:
An access control model that meets the three identi-
fied access control requirements, the CSAC (Context-
sensitive Access Control) model, is developed in the
next section. Thereafter, an agent-based architecture

526

for the implementation of document-centric work-
flow is presented. Subsequently, it is explained how
the access control model maps onto the architecture.
The paper concludes by discussing practical issues
when implementing the access control model in the
agent-based workflow architecture.

CSAC: An Access Control Model
for Workflow Systems

The model developed in this paper builds on well-
accepted Role-based Access Control (RBAC) princi-
ples. Additional concepts that facilitate the needs of
the workflow environment are introduced.

RBAC

The interpretation of RBAC hinges on the concept
of a role. Permissions and users are both assigned to
roles. A user receives the permissions associated with
the role(s) that the user may assume. Formally, the fol-
lowing sets can be identified:

USER the set of users who are capable of
performing actions in the system;
ROLE the set of all roles in the application;

OBJ the set of all objects in the system;
METH the set of actions that may be
performed on objects in the system.

Because methods are dependent on the semantics of
the objects in the system, permissions are defined as
the methods that may be performed per object, i.e.

PERM c 2OB] X 2]VIETH

Roles are related to each other according to a partial
order. Roles inherit the permissions of the roles that
are junior to them in the partial order.

RH = (ROLE, <)

The following function will return all the users that
belong to a role or a role superior in the partial order
to that role.

U: ROLE — 2USER

The concepts encountered in RBAC models do not
fully match the concepts found in the workflow envi-
ronment. Thus, additional concepts as encountered in
Workflow Systems need to be introduced.

Workflow concepts

Workflow Systems refer to the software that facilitates
the modelling and execution of business processes.
The business process is described to the Workflow
System by means of a process definition. The process
definition is constructed during build time. A process
definition identifies the tasks that form part of the
business process, and provides business rules that spec-
ity the conditions for the execution of the tasks.

A workflow is executed in the run-time environment.
During run-time, process instances are created based on
the specification provided by the process definition. In
a purchase order process, a process instance will be gen-
erated for each purchase order that is generated. Task
instances will be created on demand in the run-time
environment depending on the interpretation of the
business rules that form part of the process definition.

Tasks can thus be identified as the principle building-
blocks of Workflow Systems. A task can be performed
by certain roles. The TASK set can thus be introduced
to represent the various task definitions. The following
function maps tasks to the roles that may perform them:

T: TASK — 2ROLE

A task requires certain permissions to be completed.
The function:

P: TASK — 2PERM (A)

associates tasks with permissions. A Workflow is con-
sidered a partially ordered set of tasks:

W = (TASK, <)

If t; <'t, then t, is executed in parallel with or before
t,. The discussed constructs are all set up during build
time. The next subsection introduces concepts related
to the run-time enforcement of access control.

Computers & Security, Vol. 20, No. 6

Run-time enforcement: The WSession
concept.

Users do not always need to fulfil all roles that have
been associated with them. A WSession 1s used to
control the activation of roles in the workflow envi-
ronment based on the task instance that is currently
being dealt with.

The need for strict least privilege (Property 1) in a
workflow environment requires the user to assume
the absolute minimum role required for the task.
When a user is chosen for a task, it is done based on
the roles that the user may assume. However, in order
to support the concept of strict least privilege, a
WSession associates a user with permissions based on
the requirement of the task and not the user’ role.

We can thus define W/ Session as follows:
WSession = {(u,P(f)) | (Fre T(f)):ue Ur)}

This also addresses the sequence of events requirement
(Property 2). If permission pi must only be executed
after permission pj, the administrators of the system
must ensure that the following invariant is true.
P.eP(t) A p;€ Pit,) et <t (Invariant 1)
This section demonstrated how properties 1 and 2,
viz. strict least privilege and sequence of events, could
be attained. The next section extends these ideas to
incorporate separation of duty (Property 3).

Separation of duty

As already stated, separation of duty has as its primary
objective the prevention of fraud and errors. There are
two strategies for the enforcement of separation of
duty requirements. Certain SoD requirements can be
enforced in the build-time environment, viz. static
separation of duty. Static separation of duty require-
ments will therefore restrain the build-time associa-
tions between the entities. For example, the same user
may never be an auditor and a financial manager.
Alternatively, SoD requirements can be enforced in
the run-time environment, viz. Dynamic separation

527

Access Control in Document-centric Workflow Systems/Reinhardt A.

Botha and Jan H.P Eloff

of duty. Dynamic separation of duty requirements do
not constrain the build-time associations between
entities. They do, however, restrict how these associa-
tions are activated at run-time. For example, a user
may not be restricted to belong to the manager role,
but may not assume that role for a purchase order that
he himself initiated.

Static separation of duty, being the responsibility of
the administration and design tools, is not discussed in
this paper. This paper concentrates only on dynamic
separation of duty requirements.

The concept of conflicting roles has been identified as
a means of expressing separation of duty require-
ments. [4] This paper shows how separation of duty
(Property 3) can be implemented by using the con-
cepts of conflicting tasks and conflicting users.

Conlflicting users are defined as users who are likely to
conspire. In practice, family members may be consid-
ered conflicting users. Conflicting tasks are tasks that
should not be performed by the same user or by two
conflicting users. In terms of the example, a typical
SoD requirement is that a purchase order may not be
approved by the originator or a family member of the
originator of the purchase order.

This requirement has, therefore, an impact on how the
users are selected. The selection of users would not
only involve the roles that a user may fulfil, but must
also consider the access history throughout the life of
the document. For this reason, a baggage database, i.e.
a history of relevant accesses to the document, will be
maintained. We define baggage as a database consist-
ing of tuples of the following format:

(n,t,u,,m) € N x TASK x USER x ROLE x
METH

Since the baggage is stored for each document, the bag-
gage database of a specific document is denoted by DB
where o € OB]J. Not all the tuples in DB_ are mean-
ingful. The following invariant must be maintained:

(mt,u,nm) € DB < [re R A [re T(H] A
[(o,m) € PERM] (Invariant 2)

528

The separation of duty constraints can be modelled as
further invariants that must be maintained. To facili-
tate their specification, two functions to identify the
conflicting tasks and conflicting users are specified as
follows:

CT- TASK — 245K and
CU: USER —> 2USER

The set of conflicting tasks returned by CT will con-
tain at least the task used as a parameter. Similarly, CU
will return at least the user used as a parameter. In
order to enforce separation of duty, the following
invariant must furthermore be maintained: (The #
indicates that the value does not matter.)

(n,t,u,rp) € DB, & [Vu, e CUW][Vt e CT(1)]:
(n,ty,u,, #,H) DB (Invariant 3)
This model showed how the three properties required
for access control in Workflow Systems can be real-
ized. Property 1, strict least privilege, was achieved by
associating the function P (see (A)) with the WSession
object. Property 2, order of events, will be achieved if
Invariant 1 is maintained. Property 3, separation of
duty, requires the maintenance of Invariants 2 and 3.

The paper now proposes an agent-based architecture
for document Workflow Systems. Thereafter it will be
shown how the CSAC model can be incorporated
into the architecture in order to implement the three
access control properties.

An Agent-based Architecture for
Document-centric Workflow

Systems

The architecture of the proposed agent-based Work-
flow System consists of the following five agent types:

User Agent. The User Agent is the interface
between the user and the incoming work;

Profile Agent. The Profile Agent is responsible
for the maintenance of organizational information.
It is therefore responsible for maintaining a
database of all users in the system, the roles in the

Computers & Security, Vol. 20, No. 6

system, as well as the mapping between users and
the roles they may assume;

Document Agent. A Document Agent is the
custodian of a document. It is generated when the
document is created. All access to the document
occurs through the Document Agent. The
Document Agent will see the lifecycle of a docu-
ment as a state machine. It will note the state of
the document and determine which roles may
access the document based on the state. The
Document Agent will record the access history for
the document in a baggage database;

Session Agent. The Session Agent is responsible
for coordinating the activities involved in a user’s
work session. It will coordinate the various
Document Agents that may form part of a specif-
ic task. It acts as an intermediary between the
Document Agents and a User Agent. A Session
Agent is thus responsible for maintaining informa-
tion about the specific access permissions granted
to, and exercised by, the user performing the task;

Routing Agent. The Routing Agent is responsi-
ble for the routing of work. It controls the creation
of Session Agents according to the business rules
contained in the process definition.

Consider how a typical process instance is handled.
Figure 1 graphically depicts the lifecycle of the agents
throughout the execution of a process instance. Note
that the persistent agents, i.e. those that exist for longer
than the duration of the process instance, are indicated
by solid lines, whereas the volatile agents are indicated
by a broken line.The following stages can be identified:

(A) A Routing Agent is created for the new process
instance;

(B) The Routing Agent creates a Session Agent who
will be responsible for overseeing the execution of
a task;

(C) The Session Agent determines which docu-
ments are required and requests them to migrate
to the Profile Agent. If a new document must be

(A) _ordergs7

4 Routing
\ Agent

~ =

Order stock task for Order 987

I

7/ . ~N
| Session | _.—-

—

©)

Document1
Agent

-
S———

\ Agent

A/

Session

e Agent)

Profle)
Agent \

- — - — - — — - — -

Document1
Agent

)

Session
| \ Agent

Figure 1: Lifecycle of agents throughout a process instance.

529

Access Control in Document-centric Workflow Systems/Reinhardt A.

Botha and Jan H.P Eloff

created, the Session Agent will create the relevant
Document Agent;

(D) The Session Agent and the Document Agent
migrate to the Profile Agent;

(E) The Profile Agent, the Session Agent and the
Document Agents negotiate on possible users
that may execute the task. The Document Agents
interrogate their baggage databases to ensure
that inappropriate users are not assigned to the
task;

(F) After choosing a user, the Session Agent and the
Document Agent migrate to the User Agent. The
Document Agent will maintain access history as
part of its baggage;

(G) Once the task has been completed, the Session
Agent migrates back to the Routing Agent, and
the Document Agents migrate to their persistent
storage. The Session Agent is destroyed;

(H) The Routing Agent will determine the next task
to be performed. Once all the tasks have been
completed, the Routing Agent will be destroyed.

The next section shows how the CSAC model can be
implemented in an agent-based environment that fol-
lows this architecture.

Implementing CSAC in an agent-
based architecture

The discussion on implementing CSAC in the pro-
posed agent-based architecture commences with an
overview of the physical distribution of information
in the agent-based architecture. Thereafter, the main-
tenance of the invariants is discussed in the context of
the agent-based architecture.

Mapping CSAC components onto the
agent-based architecture

Figure 2 graphically depicts the mapping of the
CSAC components to the agents that were identified
in the proposed agent-based architecture. Consider
each of the agents in turn.

The Routing Agent will be generated containing
the workflow definition T¥. As such, it contains

530

information about the tasks and the information that
it requires for making decisions about the flow
between tasks. The Routing Agent will thus also con-
tain the functions P and T that return the required set
of permissions and the possible set of roles respective-
ly. The Routing Agent will furthermore contain the
function CT that identifies conflicting tasks.

When the Session Agent is created, it will contain the
results of functions BT and CT for the task for which
the session is responsible. The Session Agent will fur-
thermore contain the WSession object whose con-
tents will be created when the Session Agent, the User
Agent and the Document Agents collaborate to exe-
cute a task.

A Document Agent is created for each document in
the system. The OBJ set thus represents all the
Document Agents. A Document Agent encapsulates
the actual document and the baggage database. The
interface to the Document Agent represents the
PERM set. The Document Agent will have knowl-
edge about the lifecycle of a document and as such
knows the state of the document. The Document
Agent will contain the mapping of permissions
allowed, based on the state of the document.

The Profile Agent contains information about the
structure of the organization. It will thus contain the
USER and ROLE sets. Furthermore, it will contain
partial order RH, as well as the implementation of
functions U and CU.

The User Agent only serves as an interface between
the system and the user. As such, the collection of
User Agents presents the set of users in the system.

The formal model developed in the previous section
provided a set of invariants that must be maintained.
It 1s important that these invariants should not only
prevent the occurrence of an error once an undesired
situation arise, but the execution of the workflow
should also be planned to minimize the chances of an
undesired situation arising. The following section
provides implementation suggestions on the mainte-
nance of the invariants in the model.

Computers & Security, Vol. 20, No. 6

ROUTING AGENT

_w LT

OoBJ

A

-
—

DOCUMENT AGENT

T

™ CcT)

—

/~ SESSION AGENT)

for task t

Document
Baggage

METH

|

"L P

—

LT

WSession |-

\

USER AGENT

A /

PROFILE AGENT
cu U

RH
E
%

A

*)

Figure 2: Mapping the CSAC model compontents to the agent-based architecture.

Implementing the CSAC invariants

The CSAC model provided a set of invariants that
must be maintained.

Invariant 1 is concerned with the definition of the
process. As such, invariant 1 must be maintained dur-
ing build-time, thus falling outside the scope of the
proposed agent-based architecture. Invariants 2 and
3 are based on values that should never exist in the
baggage of a document. Baggage is written because
of interaction with the Document Agent. Since the
Session Agent is mediating all the communication
with the Document Agents, the Session Agent will
be responsible for ensuring that invariants 2 and 3
are maintained. Consider each of the invariants in
turn.

Invariant 2 is concerned with the soundness of the
tuples inserted into the database. It was given as:

(mt,u,nm) € DB < [re Ru)] A [re T(H] A
[(o,m) € PERM] (Invariant 2)

During the collaboration between the Profile Agent,
the Session Agent and the relevant Document Agents,
a user will be chosen only if the user can perform the
role, i.e. if r€ R(u). Furthermore, only roles that may
perform the task will be considered, i.e. re T(f). The
results of function P for a specific task will be stored
by the Session Agent. These results will return tuples
of the format (o,m). Since this information is available
to the Session Agent, which acts as an intermediary
between the User Agent and the Document Agents, it
is arbitrary to ensure that (#,#,#,#,m) only gets writ-
ten to DB .

Invariant 3 is concerned with the implementation of
property 3, separation of duty. It was given as:

(n,t,u,rp) € DB &

531

Access Control in Document-centric Workflow Systems/Reinhardt A.

Botha and Jan H.P Eloff

[Vu, e CUW][Vt,e CT(0)]:(n,th,um,# #g DB

(Invariant 3)

The problem with maintaining the invariant is that it
implies that the check is done only when new tuples
are inserted into the baggage database. New tuples are
written away to the baggage database only once a
method has been invoked by the Document Agent.
By then, it is too late to prevent the action. The sys-
tem should thus prevent the action from ever occur-
ring. Thus, when the Profile Agent, the Session Agent
and the Document Agent(s) collaborate (step (E) in
Figure 1) to identify a user suitable to perform the
task, unsuitable users should be disregarded. This can
logically be implemented in the following way:

First, a list of users that, based on their assigned roles,
may perform the task. This is given by Umqmal =
UR(TT())

The relevant Document Agents must then assemble a
list of users based on the conflicting tasks that appear
in their baggage. This list is described as:

dm'am ictin, task |
(3o, m)e D(H)][3t eCTt)] (n,x,u,#,m)e DB_}

The list can then be expanded to include conflicting
users:

= {u | [JueU J:u, € CUu)}

extmdéd didconflictingtask

The list of users can be calculated as Umlgma[minus
U, . rendeq- This list excludes all users who would cause
invariant 3 not to hold . The Session Agent can thus
safely select an appropriate user to perform the task

from the list.

Conclusion

In this paper three requirements for access control in
Workflow Systems were identified. An agent-based
architecture for the implementation of document-
centric workflows was proposed. A model, based
on role-based access control principles, to address
the three requirements of access control in Workflow

532

Systems was developed. Thereafter, it was demonstrat-
ed how the model could be incorporated in the sug-
gested agent-based architecture. Finally, the paper dis-
cussed practical implementation issues.

This paper showed that role-based access control
principles are suitable for implementation as an access
control mechanism in an agent-based workflow envi-
ronment. The introduction of persistent Document
Agents provides the freedom of documents that can
roam an open environment in a secure fashion.

References

[1] Atluri, V. and Huang, W-K. (1996) “An Authori-
zation Model for Workflows**, Proceedings of the
fifth European Symposium on Research in
Computer Security, Rome, Italy, pp. 44 — 64.

[2] Bertino, E., Ferrari, E. and Atluri, V. (1999)
“Specification and Enforcement of Authorization
Constraints in Workflow Management Systems”

ACM Transactions on Information and System
Security,Vol. 2, No. 1, pp 65 — 104.

[3] ISO (1989) ISO 7498-2: Information processing

systems — Open Systems Interconnection —
Basic Reference Model — Part 2: Security
Architecture

[4] Kuhn, D.R. (1997) Mutual exclusion of roles as a
means of implementing separation of duty in
role-based access control systems. Proceedings of
the 24 ACM Workshop on Role-based Access
Control, Fairfax, VA, pp. 23 — 30.

[5] Long, D.L., Baker, J. and Fung, E (1999) “A
Prototype Secure Workflow Server” Proceedings
of the 15 Annual Computer Security
Applications Conference, Radisson Resort
Scottsdale, Phoenix, Arizona, pp. 129 — 138.

[6] Workflow Management Coalition. Workflow
Security Considerations — White Paper.
Document number WFMC-TC-1019 Issue 1.1
Available from www.wfmc.org

