Separation of dutiesfor access control enforcement in workflow environments

R A Botha; JH P Eloff
IBM Systems Journal; 2001; 40, 3; ABI/INFORM Global
pg. 666

Separation of duties
for access control
enforcement in
workflow environments

Separation of duty, as a security principle, has
as its primary objective the prevention of fraud
and errors. This objective is achieved by
disseminating the tasks and associated privileges
for a specific business process among multiple
users. This principle is demonstrated in the
traditional example of separation of duty found in
the requirement of two signatures on a check.
Previous work on separation of duty
requirements often explored implementations
based on role-based access control (RBAC)
principles. These implementations are concerned
with constraining the associations between
RBAC components, namely users, roles, and
permissions. Enforcement of the separation of duty
requirements, although an integrity requirement,
thus relies on an access control service that is
sensitive to the separation of duty requirements.
A distinction between separation of duty
requirements that can be enforced in
administrative environments, namely static
separation of duty, and requirements that can
only be enforced in a run-time environment,
namely dynamic separation of duty, is required.
It is argued that RBAC does not support the
complex work processes often associated with
separation of duty requirements, particularly with
dynamic separation of duty. The workflow
environment, being primarily concerned with the
facilitation of complex work processes, provides
a context in which the specification of separation
of duty requirements can be studied. This paper
presents the “conflicting entities” administration
paradigm for the specification of static and
dynamic separation of duty requirements in the
workflow environment.

he proliferation of computer networks facili-
tated the move toward office automation. Allen'
identifies the move toward automating the office as
one of the turning points in interacting with com-

by R.A. Botha
J. H. P. Eloff

puters in the previous millennium. The convergence
of computing, communications, and digital informa-
tion has enabled business activities to be supported
across boundaries previously deemed unsurpassable.
Workflow, being the computerized facilitation of
business processes,” had become a much-discussed
topic in the 1990s. Workflow management systems
provide the facilities to define, manage, and execute
business processes in an electronic fashion. Increas-
ing use of electronic means to conduct business leads
to significant increases in processing performance
and efficiency. These advantages, however, come at
acost. One such cost is an increased information se-
curity risk.

Information security requires systems to provide five
essential services, namely authentication, access con-
trol, integrity, confidentiality, and nonrepudiation.*
These security services protect various attributes.
Take, for example, the integrity attribute. This at-
tribute is concerned with three different aspects of
integrity:* (1) operational integrity deals with con-
current access to data, (2) physical integrity implies
protection from loss of data, and (3) semantic in-
tegrity requires that the data comply with the appro-
priate business rules. Operational integrity can be
maintained through concurrency controls as part of
the integrity service. Physical integrity can be
achieved by the use of checksums, provided by the
integrity service, and cryptographic techniques, pro-

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

666 BOTHA AND ELOFF 0018-8670/01/$5.00 © 2001 1BM IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1 The workflow environment

ADMINISTRATION ENVIRONMENT

PROCESS DEFINITION
PROVIDES A SPECIFICATION
OF THE BUSINESS PROCESS

TASK

PROCESS INSTANCE 1

MONITORING TOOLS

SECURITY ADMINISTRATION
(ENFORCE STATIC SoD
REQUIREMENTS)

FORMULATE SoD

REQUIREMENTS
(AS ACCESS CONTROL RULES)

ENACTMENT ENVIRONMENT

PROCESS INSTANCE 2

INTERACTION ENVIRONMENT
RESPONSIBLE FOR THE PHYSICAL
INTERACTION WITH USERS AND
EXTERNAL APPLICATIONS

PROCESS INSTANCE 3

PROCESS INSTANCE 4

ADMINISTRATION TIME

vided by the confidentiality service. Semantic integ-
rity relies heavily on the access control service, be-
cause it requires data to be changed only according
to certain business rules.

An example of such business rules is separation of
duty requirements. Separation of duty requirements
have as their primary objective the prevention of
fraud and errors, thus ensuring semantic integrity.
They are often formulated as business rules such as
“acheck requires two different signatures.” This rule
needs the cooperation of the authentication service
to confirm the identity of the user and the access con-
trol service to limit access rights at particular times.

This paper deals with the implementation of sepa-
ration of duty requirements in the access control ser-
vice in a workflow environment. In the ensuing pre-
sentation, role-based workflow environments are
introduced first. Subsequently, the “conflicting en-
tities” administration paradigm is introduced. There-
after it is demonstrated how this paradigm applies

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

RUN TIME

to static separation of duty requirements. Finally, dy-
namic separation of duty requirements are demon-
strated according to the “conflicting entities” admin-
istration paradigm.

We start by observing a typical role-based workflow
environment.

Role-based workflow environments

Figure 1 depicts the three main functional areas that
can be observed in a workflow system, namely the
administration environment, the enactment environ-
ment, and the interaction environment. These ar-
eas are briefly considered in turn.

The administration environment is used to define the
business process by means of a process definition.
The basic building blocks of a process definition are
tasks.’ Tasks represent a small unit of work. Human
users could perform tasks, or tasks could be auto-
mated to represent computer activity such as the up-

BOTHA AND ELOFF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

667

dating of a database. Tasks to be done by humans
are the responsibility of a single user. The computer-
understandable expression of a task is called the task
definition.

A business process is defined by linking tasks in a
directional graph with predicate conditions on the
arcs of the graph. The computer-understandable
form of a business process is called the process def-
inition. When the business process is performed, the
predicates will be evaluated on completion of a task
to determine which task(s) must be performed next.

In addition to the definition of business processes,
the administration environment will also be used to
monitor workflow enactment, manually intervene in
automated activities, and perform security admin-
istration tasks.

Separation of duty (SoD) requirements will be for-
mulated in the administration environment as bus-
iness rules. As an example, a business rule may state:
“A person may not approve his or her own purchase
order.”

In the enactment environment the workflow engine
is responsible for interpreting the business process
definitions and creating a process instance for each
time the process must be enacted. A process instance
can thus be seen as a persistent object representing
aspecific occurrence of a business process. Each pro-
cess instance will record information pertaining to
that specific process instance. Examples of such in-
formation are: the initiator of the process, the date
or time of initiation, the tasks that have been per-
formed, and any other information that has an in-
fluence on the execution of the business process. The
enactment environment considers the state of the
process instance, evaluates the predicates that de-
termine the route to follow, and creates the appro-
priate task instance. Each process instance thus con-
sists of one or more task instances.

Furthermore, the enactment environment will de-
termine which users may perform the task. In order
to make this decision, the enactment environment
evaluates the separation of duty requirements that
were defined as part of the access control rules in
the administration environment. It would thus de-
cide not only what the next task is but also which users
may possibly perform that task. In the case of a pur-
chase order it would, for example, determine that
the “approve order” task is the one to be performed.

668 BOTHA AND ELOFF

In addition, it would exclude the initiator of the pur-
chase order from the potential performers of the ac-
tivity.

The interaction environment is concerned with the
actual performance of the task by the user. A com-
mon implementation would use the task list meta-
phor, also called a worklist, to present the user with
the tasks that he or she must (or can) perform. Al-
though several implementations of a worklist are pos-
sible, the model suggested in this paper requires the
worklist to be dynamically constructed during run
time. Each time that a user attempts to perform a
task on the user’s worklist, the interaction environ-
ment must confirm that the user is still authorized
to perform the task.

The interaction environment may activate other ap-
plications based on the requirements of a task. A
word processor, for example, may be activated when
the task requires a letter to be written. It must fur-
ther ensure that the access rights are granted and
revoked in a timely fashion. For this reason, it is re-
sponsible for ensuring that access rights are only
available to a user while actually performing a task.
Access rights can, therefore, not be abused outside
the task context. It would, for example, ensure that
the “approve order” authorization, or permission,
is not available to a person when the purchase order
is initiated.

In order to discuss the concepts further, we intro-
duce an example of a workflow that will be used
throughout the paper for illustrative purposes.

A workflow example. Figure 2 graphically describes
a portion of a typical purchasing workflow. Each task
on the diagram is divided into three sections: (1) the
description of the task is identified in bold type, (2)
the document being used is identified between square
brackets, and (3) the organizational position of the
person performing the task is identified in italics. On
completion of a task, the workflow engine determines
the next task to be initiated by evaluating the pred-
icates shown between parentheses on the line con-
necting tasks.

In the portrayed workflow, a buyer will complete a
purchase order (Task 2) based on a requisition form
prepared by the stock controller (Task 1). Thereafter
an accountant will determine the availability of funds
(Task 3). Should funds be available, the next step is
determined by the value of the order. Orders in ex-
cess of 10000 are forwarded to the accounts payable

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2 A purchase process

1: PREPARE REQUISITION
[REQUISITION FORM|

Stock Controller Buyer

5: SEND ORDER TO
SUPPLIER

[PURCHASE ORDER]
Buyer ‘

REST OF
PROCESS

manager for approval (Task 4), whereas smaller or-
ders are immediately sent to the supplier by the buyer
(Task 5). Although the business process consists of
several more tasks linked by several possible routes,
the other tasks bear no impact on the rest of the pa-
per and are thus omitted.

The workflow example utilized documents as the pri-
mary interface to the various tasks. These documents
could contain sensitive information. Access to this
information thus needs to be tightly controlled. The
example furthermore showed that tasks are often as-
sociated with organizational positions, also called
roles. Role-based access control (RBAC) has become
a popular mechanism for administering access con-
trol, both in and out of workflow environments.*”’
RBAC also plays a fundamental role in current sep-
aration of duty research. It is therefore appropriate
to discuss role-based access control, in particular as
it pertains to the workflow environment. Thereafter

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

2: ORDER STOCK
[PURCHASE ORDER]

(VALUE < = 10000+
FUNDS = YES)

(FUNDS = NO)
REST OF

PROCESS

3: CHECK FUNDS
~ [PURCHASE ORDER]

Accountant

(VALUE > = 10 000+
FUNDS = YES)

4: APPROVE ORDER
[PURCHASE ORDER]

Accounts Payable
Manager

(APPROVED = YES)

REST OF

(APPROVED = NO) bt s

a state-of-the-art review of research regarding sep-
aration of duty is given.

Role-based access control. RBAC uses the role ab-
straction as its primary means of specifying access
control requirements. " During role administration,
permissions are assigned to roles and users are as-
signed to roles. Permissions indicate the ability to
perform a certain operation on information. “Cre-
ate order” and “approve order” may, for example,
be two permissions in the current example. A user
is assigned membership in a role consistent with the
user’s duties and responsibilities in the organization.
Role administration is reduced by the incorporation
of a role hierarchy. A role hierarchy indicates a se-
niority relationship between roles, typically accord-
ing to the management structure of the organization.
Figure 3 depicts a role hierarchy relating to the ex-
ample workflow. Permissions are inherited upwards
in the hierarchy. Thus, any permissions assigned to

BOTHA AND ELOFF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

669

Figure 3 Role hierarchy example

ACCOUNTS PAYABLE MANAGER

ACCOUNTANT

STOCK CONTROLLER

EMPLOYEE

the “stock controller” role are inherited by the “buy-
er” role.

Users, however, do not always use or need all of the
permissions specified during role administration.
Role-based environments thus provide a means to
control role activation. Control is achieved through
the notion of a session. By definition, a session as-
sociates users at run time with a subset of the roles
that may be assumed by the user. This association
may be necessary, for example, when Tom, an ac-
counts payable manager, is acting as a buyer and cre-
ates a purchase order. At that stage, Tom should not
have permission to “approve order.”

RBAC is strongly featured in current research on sep-
aration of duty. The next subsection provides an over-
view of state-of-the-art research regarding separa-
tion of duty.

Separation of duty. Saltzer and Schroeder'' iden-
tified separation of duty, or “separation of privilege”
as they called it, as one of eight design principles for
the protection of information in computer systems.
They built on the observation that a security system
with two keys is more robust and flexible than one
that requires a single key. No single accident, decep-
tion, or breach of trust is therefore sufficient to com-
promise the system.

Clark and Wilson * identified separation of duty as
amechanism that can be implemented to ensure data

670 BOTHA AND ELOFF

integrity by making certain that system objects cor-
respond to the real-world objects they represent.
They asserted that, at the policy level, processes are
divided into steps, with each step performed by a dif-
ferent person. Separation of duty is thus tightly con-
nected to application semantics.

Sandhu’s work on Transaction Control Expres-
sions'*'* introduced a notation for dynamic separa-
tion of duty. Roles were used to specify which users
could perform which transaction steps. Separation
of duty was then introduced by specifying that a user
may only perform one step in a transaction. In or-
der to achieve this one-for-one relationship, a his-
tory of the execution of each step had to be kept with
the object on which the transaction operated. A study
by Nash and Poland " introduced the phrase object-
based separation of duty, meaning that every trans-
action against an object is forced to be performed
by a different user. Sandhu et al."" presented a for-
mal model of RBAC with the concept of constraints
on the associations firmly embedded.

The paper by Ferraiolo, Cugini, and Kuhn on RBAC'*
presented operational separation of duty as a sup-
plement to static and dynamic separation of duty.
Operational separation of duty required that no role
could contain the permissions for all the operations
necessary to perform a business process. This re-
quirement implies that at least two roles should be
involved in the completion of each business process.

Simon and Zurko'!” enumerated various forms of
separation of duty and indicated how the separation
of duty policies can be expressed in Adage, a general-
purpose access control policy editor.

Kuhn™ explored the mutual exclusion of roles as a
separation of duty mechanism. In addition to the
time at which mutual exclusion is applied (static ver-
sus dynamic), the degree to which privileges are
shared by mutually exclusive roles (strong or partial
exclusion) are also considered.

Gligor, Gavrila, and Ferraiolo ' also enumerated the
known forms of separation of duty requirements by
presenting a formal model to express separation of
duty constraints in an RBAC environment. They in-
dicated the relationships between the various sep-
aration of duty constraints. Their work, however,
failed to address role hierarchies in typical RBAC im-
plementations.

Nyanchama and Osborn™ discussed various kinds
of conflicts that have to be considered when imple-

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

menting separation of duty policies. Their model
does not involve separation of duty principles that
require a model of task dependencies. They evalu-
ated the effect of role hierarchies in great depth in
terms of their role-graph model.

Ahn and Sandhu?' defined the RSL99 language for
specifying separation of duty constraints. They based
their separation of duty requirements on the con-
cepts of conflicting entities. Sets of conflicting users,
conflicting roles, and conflicting permissions restrict
the way in which users, roles, and permissions can
be associated with one another.

None of the mentioned papers addresses the notion
of a task, although some do recognize this omission
as a shortcoming of their models.

Thomas and Sandhu*~* proposed that access con-
trol modeling should be approached from the per-
spective of activities or tasks, thus yielding an “ac-
tive” security model. The model is active in the sense
that it provides mechanisms and abstractions for the
run-time management of access control permissions
as tasks progress to completion. Their papers pro-
vide excellent motivation for the necessity of con-
trolling access dynamically. They establish a new con-
ceptual framework for their active security model.
It is not shown, however, how this task-based model
integrates with existing access control models. This
integration is a necessary requirement within an en-
terprise environment, because not all access control
decisions in an organization will be made in the con-
text of a workflow.”

The model proposed by Bertino et al.® presents state-
of-the-art thinking regarding access control in the
workflow environment. Their model addresses the
expression and evaluation of access control con-
straints in great detail with a formal language. The
expression of constraints in a formal language is,
however, unsuitable for end-user specification. The
work presented in this paper concentrates on em-
ploying a paradigm for the administration of sepa-
ration of duty requirements. This is done in an at-
tempt to minimize the impedance mismatch between
the administration and enforcement paradigm.

Even a cursory glance at the preceding material
makes it clear that the workflow environment re-
quires special access control functionality with spe-
cial administrative needs. The next section thus in-
troduces the “conflicting entities” administration

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

paradigm as a unified way to administer separation
of duty requirements within a workflow environment.

CoAP: The “conflicting entities”
administration paradigm

Many of the current models contain the notion of
“conflict” in some guise or other. However, none of
the work associates conflict with all the entities that
could conflict at the same time. Notable, in most of
the cases, is the lack of reference to a task abstrac-
tion. Exceptions are the work of Thomas and
Sandhu®** and the work of Bertino et al.® In Ref-
erence 23 conflicts between tasks (called separation-
dependency) are identified as an important way of
expressing separation of duty. However, the influ-
ence and existence of other potential conflicts are
not discussed. In Bertino et al.,” conflicts between
tasks are represented through a number of predi-
cates that form part of their formal language. How-
ever, it is considerably more difficult to express sep-
aration of duty requirements such as, “Since John
and Jack are brothers, they should not be able to ap-
prove each other’s orders,” than, “Since John ini-
tiated the order he may not approve it.”

This paper subsequently presents the “conflicting en-
tities” administration paradigm (CoAP) as a uniform
way to specify separation of duty constraints in the
workflow environment. In this way, the various en-
tities that have been identified in previous research,
namely users, permissions, roles, and tasks, are in-
cluded. This paper recognizes that each of those en-
tities could have conflicting clements in them. Con-
flict between entities, in the general sense, implies
that the risk of fraud increases if associations with
those entities are not carefully controlled. Figure 4
depicts the entities and associations evident in CoAP.
The task entity is upheld as the building block for
expressing separation of duty requirements with CoAP
in terms of the underlying workflow models. Before
presenting a detailed discussion of the conflicting en-
tities, we consider a brief, high-level discussion of
the four types of conflict that can be identified.

Fundamental to the interpretation of “risk of fraud”
is the concept of permissions. Permissions indicate
the ability to perform a certain action on an object.
Permissions, therefore, are central to our separation
of duty definitions. Permissions will be considered
as conflicting permissions ™ if they, together, provide
more ability than required to a single user. Conflict-
ing users®' are those users who may stand to gain by
conspiring. In practice such users may be family

BOTHA AND ELOFF B71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4 Entities and associations in CoAP

ASSOCIATIONS

ACCOUNTS ACCOUNTANT
PAYABLE (===~ ~-.._
MANAGER % -

y
BUYER ___.
-..*@___,-

STOCK
CONTROLLER

APPROVE
ORDER *®

CREATE

ORDER

©

CONFIRM
FUNDS
FOR ORDER

CREATE
REQUISITION

members. Conflicting roles '*% are positions that share
conflicting permissions. From a practical perspec-
tive, the conflicting permissions might not always be
identified, since the identification of conflicting per-
missions for conflicting roles may negate the admin-
istrative advantages obtained through the role ab-
straction in RBAC. However, identifying conflicting
roles would be senseless if there were no conflicting
permissions involved. Conflicting tasks similarly re-
quire some conflicting permissions to complete. To
ease administration, conflicting tasks may also not
enforce the identification of conflicting permissions.

These conflicts may be checked either at adminis-
tration time or at run time (see Figure 1). The next
subsection discusses how these conflicts can be eval-
uated at administration time, i.e., to enforce static

672 BOTHA AND ELOFF

2. ORDER STOCK TASK

Seiai s
St >

5
fev
-f
N
2 WORKFLOWS
K4 4

-

ASSOCIATIONS

Q CLERK
e 5

Y
_&) EMPLOYEE

ASSOCIATIONS

CREATE
REJECTION
LETTER

PERMISSIONS

separation of duty requirements. Thereafter, how dy-
namic separation of duty requirements can be ex-
pressed with CoAP is discussed.

Static separation of duty requirements. Static sep-
aration of duty requirements can be enforced in the
administration environment. For this reason, assign-
ments that should never occur can thus be prohib-
ited. It has been pointed out that this feature can be
very restrictive to business operations, especially in
smaller organizations. However, it may still prove
useful in cases where business rules that span an en-
tire organization and stay constant over time must
be expressed.

Consider the well-accepted business rule that “au-
ditors should act independently.” This rule implies

IBM SYSTEMS JOURNAL, VOL 40. NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 Static separation of duty interpretations for the business rule “auditors should act independently”

Possible Conflict

Interpretation with Reference to Business Rule

Conflicting roles
mutually exclusive.

Conflicting permissions
permission.

Conflicting users

Conflicting tasks

User assignments to the “auditor” role and (for example) “accounts payable manager” role must be
The same user may under no circumstances receive the “approve order” and “approve audit”
Members of the same family must be considered as the same user and may therefore not be

assigned to roles, permissions, or tasks to which a single user should not be assigned.

A user who can do the “approve order” task may never do the “approve audit” task, and vice versa.

that auditors should not be able to audit their own
work. There are several interpretations of this bus-
iness rule. Table 1 summarizes an interpretation in
terms of each of the conflicting entities.

The first interpretation relies on the specification of
conflicting roles. By making the role of auditor con-
flict with roles of authority, such as the accounts pay-
able manager in the workflow example, the same user
may never be assigned the role of auditor and the
role of accounts payable manager.

The second interpretation utilizes the specification
of conflicting permissions. It requires that permissions
that could cause fraudulent audits to occur be iden-
tified as conflicting permissions. In practice this in-
terpretation could prove very laborious and thus im-
practical. It, however, does have the advantage that
an auditor could be allowed to perform some of the
actions of a manager, provided that those actions
would not likely lead to defrauding the audit pro-
cess.

In the third interpretation the notion of conflicting
users is incorporated. An auditor would potentially
be biased should he or she audit the work of a fam-
ily member, This condition could be specified by
identifying family members as conflicting users.
These conflicting users will be interpreted as a sin-
gle user. For this reason, the conflicting user restric-
tion would operate in conjunction with other con-
flicts. It would prohibit, for example, family members
from membership in the auditor and accounts pay-
able manager roles as specified in the first interpre-
tation. The inflexibility of static separation of duty
is also shown by this requirement whereby a person
would not be able to ever act in the role of auditor
if a family member of his or hers is in a role of au-
thority such as the accounts payable manager.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Finally, conflicting tasks could be used to specify static
separation of duty requirements. In this instance the
auditing tasks could be identified as conflicting with
tasks that have financial significance in the example
workflow. For example, the “approve order” task in
the example workflow would be conflicting with tasks
in the audit orders process. This conflict would im-
ply that roles (and therefore users) that can partake
in the tasks in the audit orders process, for example,
the “approve audit” task, would not be able to par-
take in the “approve order” task.

The formal relationships between statically conflict-
ing entities were presented in the paper by Perelson
and Botha.” It indicates that specifying static sep-
aration of duty requirements is indeed very restric-
tive. However, in certain cases the restriction may
prove practical. For example, the requirement that
auditors may not do anything but audit and that they
should have no family ties that could make them even
slightly biased might be realistic. The extreme restric-
tions imposed by static separation of duty can be al-
leviated by using dynamic separation of duty require-
ments, as explained in the next subsection.

Dynamic separation of duty requirements. Dynamic
separation of duty requirements do not restrict as-
sociations in the administration environment. They,
however, restrict the activation of those roles at run
time according to the separation of duty specifica-
tion. In RBAC,'? the session concept is used to limit
the run-time associations between roles and users.
In the workflow environment, we introduce the con-
cept of a WSession as a specialization of the session
concept found in RBAC models.

WSessions in a role-based workflow environment. The
workflow enactment environment strictly controls
the establishment of WSessions. A WSession con-

BOTHA AND ELOFF 673

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trols the activation of roles in the workflow environ-
ment based on the task instance with which the user
currently deals. A WSession is transient in the sense
that it will exist only while the user is busy with a
particular task. Synchronization models such as that

A WSession is a run-time
mapping of one user to the
most junior role required
for a specific task.

proposed by Atluri and Huang? could be imple-
mented to ensure the timely creation and destruc-
tion of WSessions.

The need for strict least privilege® in a workflow
environment requires the user to assume the abso-
lute minimum role required for the task. A distinc-
tion is thus made between the user’s job and the tasks
that he or she performs as part of the job. Strict least
privilege therefore requires the permissions to
change, depending on the specific task with which
the user is busy. In order to support the concept of
strict least privilege, a WSession is thus further con-
strained to only allow the activation of a single role.
This role corresponds to the role associated with the
task, which represents the minimum permissions re-
quired for that task. The user must be a member of
the role or of a role senior to the role.

In summary, a WSession is a run-time mapping of
one user to the most junior role required for a spe-
cific task.

The WSession concept allows Tom, an accounts pay-
able manager, to assume the buyer role without as-
suming the accounts payable manager role. Figure
5 shows how a WSession is a pivotal element in link-
ing users, roles, and the workflow definition. Tom,
who acted on a worklist item that only requires the
permissions of the buyer role, receives only the per-
missions associated (directly or through inheritance)
with the buyer role. Tom’s administration-time as-
sociations are indicated by the white lines in Figure
5. Tom, in this case, is only granted the “create or-
der,” “create requisition,” “view order,” and “send
e-mail” permissions as indicated by the red lines in
Figure 5. These lines represent the run-time asso-
ciations based on the buyer role required by the ac-
tive “order stock” task.

674 BOTHA AND ELOFF

The concept of a WSession thus refers to the time
from when a user starts to work on a task in the
worklist to when that user stops or suspends work
on the same task. A task instance may thus require
several WSessions to be completed. The workflow
engine is responsible for keeping track of the state
of a task instance. Once a user selects an item from
the worklist, the user takes responsibility for the cor-
responding task instance. The user must therefore
complete that task instance. The user that accepted
responsibility for a task instance will thus be de-
scribed by an attribute of that task instance. As soon
as the user suspends or completes the task, all per-
missions are revoked from the user, and the WSes-
sion is destroyed.

Now we consider how the WSession concept can be
used to enforce dynamic separation of duty require-
ments specified according to the “conflicting enti-
ties” administration paradigm.

The implementation of dynamic separation of duty with
the use of WSessions. Dynamic separation of duty re-
quirements do not restrict associations in the admin-
istration environment. They, however, restrict the ac-
tivation of those roles in the sessions according to
the separation of duty specification. In the workflow
environment, the dynamic separation of duty re-
quirements are analyzed when the worklists are gen-
erated. Only users who may perform the task will be
notified in their worklists. Once a user selects a task
from the worklist, the separation of duty require-
ments and the user’s role are again evaluated to en-
sure that only legitimate users perform the task. This
check is necessary since a user’s permissions might
have changed since the creation of the worklist. Ta-
ble 2 summarizes how the four types of conflict can
be used to interpret the business rule: “An order may
not be approved by its initiator.”

Dynamically conflicting roles are presented as the first
possible approach. If the stock controller and the ac-
counts payable manager roles are identified as
dynamically conflicting roles, they may not be acti-
vated for the same person in one process instance.
It is important to recognize that the roles of stock
controller and accounts payable manager in the ex-
ample workflow are related through a role hierar-
chy. If a user therefore assumes the accounts pay-
able manager role, the stock controller role is
inherited by him or her. This inheritance would give

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5 The WSession concept in a workflow environment

ACCOUNTS
PAYABLE €
MANAGER

CONTROLLER

APPROVE
orper ©

CREATE ()

CONFIRM
FUNDS

WORKFLOWS

K ’
g

TOM ACTS ON
A WORKLIST

e WSESSIONS

ORDER

CREATE o
REQUISITION %

FOR ORDER

CREATE PERMISSIONS
REJECTION
LETTER

ADMINISTRATION-TIME ASSOCIATIONS
RUN-TIME ASSOCIATIONS

unnecessary permissions to a manager who wishes
to approve an order, thus violating the strict least
privilege requirement. To allow use of the dynam-
ically conflicting role approach, the role hierarchy
needs to be re-engineered as in Figure 6. The “ap-
prove order” task that is associated with the accounts
payable manager role must therefore be associated
with the new “approver” role depicted in Figure 6.

Dynamically conflicting permissions may be identified
as the second approach. In this instance the “approve

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

order” and “create requisition” permissions may be
identified as dynamically conflicting permissions. If,
for example, Tom has exercised the “create requi-
sition” permission in a specific process instance, he
will not be able to assume the accounts payable man-
ager role since doing so will allow him to exercise
the “approve order” permission. For another pro-
cess instance, however, Tom will be allowed to ob-
tain the permission “approve order” if he did not
exercise a “create requisition” for that specific pro-
cess instance.

BOTHA AND ELOFF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

675

Table 2 Dynamic separation of duty interpretation of the business rule “an order may not be approved by its initiator”

Possible Conflict

Interpretation with Reference to Business Rule

Conflicting roles

Conflicting permissions

Conflicting users

Conflicting tasks

The “stock controller” role and the “accounts payable manager” role may not both be
activated in a single user’s WSessions for one process instance.

The “create order” and “approve order” permissions must not be exercised in WSessions of
the same user for a process instance.

Family members (conflicting users) must not operate on conflicting tasks or exercise conflicting
permissions in any WSessions of a process instance.

The “create requisition form” task and the “approve order” task must be done in WSessions
belonging to different people for each process instance.

Figure 6 Role hierarchy adapted to allow for strict least
privilege

ACCOUNTS PAYABLE MANAGER

BUYER ACCOUNTANT APPROVER

STOCK CONTROLLER CLERK

EMPLOYEE

The third interpretation relies on the specification
of dynamically conflicting users. If, for example, Tom
and Dick are considered likely to conspire, they may
be identified as conflicting users. Tom and Dick
would thus be considered as one user in the context
of each process instance. The implications are con-
sidered with other restrictions imposed on a single
user, such as conflicting permissions. If dynamically
conflicting permissions are as above and Tom and
Dick are conflicting users, it would imply that if Tom
exercised the “create requisition” permission, it is
seen as if Dick did it as well. Dick would therefore
also not be allowed to activate a role that would pro-
vide him with the “approve order” permission for
that process instance. In another process instance

676 BOTHA AND ELOFF

where neither Tom nor Dick exercised the “create
requisition” permission, either Tom or Dick would
be able to assume a role granting him the “approve
order” permission.

Finally, dynamically conflicting tasks provide an al-
ternative way to specify the business rule. In the cur-
rent example, it may be specified that the “create
requisition form™ task and the “approve order™ task
are dynamically conflicting. If a user, say Tom, did
the “create requisition form” task, he will not be al-
lowed to act in the “approve order” task.

Figure 7 is a graphical depiction of how the business
rule, “an order may not be approved by its initia-
tor,” is enforced using conflicting tasks and conflict-
ing users. In a previous WSession, Dick acted as the
stock controller that performed Task 1, “create reg-
uisition form.” This fact is recorded as part of the
process instance. Figure 7 illustrates the availability
of this information by indicating a historic associ-
ation between Task | and Dick. When the worklist
for Task 4, “approve order,” is generated, it will be
recognized that a session with Tom acting as the ac-
counts payable manager should not be allowed. It
can be seen from the red lines in Figure 7 that if Task
4 appears on Tom’s worklist, Tom and Dick would
be able to conspire. Since Tom and Dick are iden-
tified as conflicting users, they are likely to conspire,
and the risk should therefore not be taken.

Prototype implementation

The principles proposed in CoAP have been imple-
mented in a prototype system. This system consists
of two parts: an administration tool and a scaled-
down workflow system. Both parts of the system were
developed using Visual Basic**6 utilizing a Microsoft

IBM SYSTEMS JOURNAL. VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7 Enforcing the business rule “an order may not be approved by its initiator” through conflicting users and conflicting

tasks

. HISTORIC
() | ASSOCIATION

Vi

OLD
WSESSION

Ll o

ACCOUNTANT

") cLERK
.
-

ACCOUNTS

PAYABLE -‘----.i--- .~~~

MANAGER 1

v
BUYER (.. ,

....-.'A@--.---"'--

STOCK
CONTROLLER

DYNAMICALLY CONFLICTING ENTITIES
ADMINISTRATION-TIME ASSOCIATIONS
. PREVIOUS SESSION ASSOCIATIONS

Access database. This section first describes the re-
sults in terms of the end user. A brief discussion re-
garding implementation details follows. Finally,
remarks about integrating the model in commercial
off-the-shelf products are made.

The end-user perspective. Figure 8 shows a screen
that enables the administrator to identify conflict-
ing tasks within a specific process definition. In Fig-
ure 8 the tasks “complete order form” and “approve
order” were identified as dynamically conflicting
tasks by applying the “apply dynamic conflict” op-
tion. For the purpose of our discussion we registered
three users: Tom, Dick, and Harry. Since Tom and
Dick are brothers, we identified them as dynamically
conflicting users on a screen similar to Figure 8. All
three of the users were identified as managers who

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

2. ORDER STOCK 3
o -;--’

-

-

WORKFLOWS

S DISALLOWED
~ WSESSION

WSESSIONS

:@ EMPLOYEE

normally would therefore be allowed to perform a
wide variety of actions, including completing and ap-
proving internal purchase orders.

The internal purchase order process begins with a
user completing a purchase order, after which it must
be approved by a manager. Only then will stores is-
sue or order the applicable items. This process was
defined and an instance generated.

Tom completed a purchase order. Figure 9 depicts
the worklists of the three users after this initial step.
The following observations can be made:

» Tom, being the creator of the order, may not ap-
prove the order. This observation is a direct result

BOTHA AND ELOFF §77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8 Specifying conflicting tasks Figure 9 Tom, Dick, and Harry’s worklists

Conflicting Tasks

llntemal Purchase Order

[v] Complete order form
7l arder
7] Check stock

{71 Order stock
[issue stock
[1'Wiite rejection letter

of the “complete order” and “approve order” tasks
being indicated as dynamically conflicting tasks.

* Dick, Tom’s brother, also may not approve the or-
der. This observation is a result of Tom and Dick
being identified as conflicting users, as well as the
two tasks being conflicting.

* Harry, however, may approve the order since he
did not create it, nor is he a conflicting user with
Tom.

This example shows that it is possible to express a
complex business rule through the consistent appli-
cation of CoAP. CoAP provides an easy and intuitive
way of expressing separation of duty requirements
in the workflow environment.

WACC Client V2 - Ha

Implementation lessons. The administrative compo-
nent and the workflow component were . 1mple ot e T T
mented as separate projects. We briefly highlight im-

plementation lessons and considerations from each.

The administration tool was developed to assist the
security administrator with specifying high-level or-
ganizational separation of duty policy. The conflicts
that are identified prohibit certain assignments ac-
cording to Table 3. Consider the following example.

Assume that a new user-role association is made. The
administration tool will first determine whether the
user is involved in a conflicting user relationship and
whether the role is involved in a conflicting relation-

678 BOTHA AND ELOFF IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3 Static conflict interpretation

May Be Users Roles Permissions Tasks
Assov::::ted Non- Non- Non- Non-
i Conflicting conflicting Conflicting conflicting Conflicting conflicting Conflicting conflicting
Conflicting X v
users
Conflicting X v/ v v v X
roles
Conflicting v x
permissions
Conflicting v x
tasks

ship. If both are nonconflicting, no further action is
required, and the association can be made. However,
if one or both are involved in a conflicting relation-
ship, acheck that is in line with Table 3 is performed
to see whether the association should be allowed (v)
or disallowed (X). Where appropriate, the admin-
istration tool will also suggest remedial action to dis-
allowed associations. For example, if conflicting tasks
are associated with nonconflicting roles, the tool will
suggest that the roles are made conflicting. Similar
checks are performed when two entities are made
to conflict. Existing associations are evaluated to de-
termine whether or not the new conflict will cause
integrity problems. Again, the tool provides feedback
regarding possible remedial action.

In the initial version of the administration tool, these
checks were performed as part of the application
code. However, in a bid to ensure integrity of the
access control information regardless of the admin-
istration tool, we are expressing these constraints as
ECA (event, condition, action) rules for active da-
tabase technology.® Implementation of these rules
as Oracle™* triggers is currently underway.

The run-time component of the prototype, in the form
of a scaled-down workflow engine, was developed
to gain a better understanding of the functioning of
workflow environments. At the same time, the pro-
posed model was implemented. From the outset the
intention was to develop the various components in
a highly modularized fashion. To this end, four main
modules exist at server level:

* A communication module, which establishes se-
cure communication over a Transmission Control

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Protocol/Internet Protocol (TCP/P) network via the
use of DirectX** application programming inter-
faces.

* Anaccess control module, which manages user ses-
sions and grants permissions by allowing methods
to be executed on objects.

* A module responsible for the workflow function-
ality that manages tasks and executes automated
activities. The application module handles the
work that a user performs and updates the appli-
cation objects on the database.

¢ A database module, which is responsible for all
storage requirements of the prototype. In this re-
spect, the database is divided into three main parts:
the access control database, the workflow database,
and the application database. The access control
database stores all user-related data, such as user
lists, role assignments, and role hierarchies. The
workflow database stores all the workflow-relevant
data, e.g., routing information for documents and
access control rules. Finally, the document data-
base stores all the documents that are used by the
business process.

The worklist is established by querying the database.
Since the expression of the conflicts is explicit, the
evaluation of the separation of duty constraints can
be performed by means of a Structured Query Lan-
guage (SQL) query without additional parsing of
rules. This query forms the crux of the enforcement
of access control requirements and, therefore, war-
rants further attention. This is best done by provid-
ing a pseudocode skeleton of the query (for estab-
lishing the worklist of user_x):

BOTHA AND ELOFF B79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECT tasks FROM active_task_instances
WHERE user_x has accepted responsibility for the
task
UNION
(SELECT tasks FROM active_task_instances
WHERE user_x is of role senior to required role
MINUS
SELECT tasks FROM active_task_instances
WHERE user_x violates conflict)

In other words, a user will receive work items in his
or her worklist that he or she already accepted, as
well as work items based on tasks that require a role
junior to the user’s role. Tasks that will cause con-
flict if the user performs them are removed from the
list. In the above pseudocode, the statement “user_x
violates conflict” thus represents further subqueries
that compare the user, the user’s role, the tasks and
the permissions of the tasks with the relevant con-
flicting sets and with the workflow history. Because
of the amount of subqueries involved, the establish-
ment of the worklist is a relatively expensive query.
The alternative of maintaining a physical worklist for
each user also presents huge overheads in large en-
vironments since the synchronization of the worklists
with the active task instances would also be expen-
sive. Further work regarding an optimal solution for
the implementation of the worklist, specifically for
deployment in large-scale systems, would thus be
necessary.

The implementation of a stand-alone prototype af-
forded us the opportunity to investigate the imple-
mentation of separation of duty mechanisms in work-
flow environments. However, a pressing issue is
whether the CoAP paradigm for the management of
separation of duty requirements can be integrated
in commercially available workflow management
software.

Integrating CoAP in commercial environments. At
this stage, no attempt has been made to implement
CoAP in conjunction with a commercially available
workflow system. However, some comments regard-
ing such an implementation are in order.

Should the vision of the Workflow Management Co-
alition regarding a fully interoperable environment?
be realized, the CoAP model will have an influence
on two components: the administration tools and the
worklist handler. However, currently the distinction
between the different components is not clear. In this
respect a commercial workflow management system
will have to exhibit the following properties to en-
able the integration of CoAP:

680 BOTHA AND ELOFF

* The administration side should be exposed to cus-
tomization. Alternatively, the administration side
should be separated from the rest of the system
with a well-defined interface. Separation would al-
low the replacement of the current administration
tools with tools based on CoAP.

» The creation of the worklist should be custom-
izable. Should the worklist be maintained as a phys-
ical entity, database-level programming in the form
of triggers might enable the appropriate removal
of work items from the individual worklists.
The timing of the granting and revocation of ac-
cess rights possibly holds the biggest challenge in
current systems. It would require the task abstrac-
tion to be clearly separated from the rest of the
system. For example, in their SALSA prototype,
Kang et al.® use a decentralized approach with no
central workflow engine. Each task contains a small
portion of the workflow specification since it knows
with which tasks to interact. In such a distributed
fashion, the task object itself controls the access
toit, and the granting and revoking of access largely
becomes irrelevant. The task objects need to in-
teract with a monitor service to be able to enforce
dynamic separation of duty requirements.

* In systems that do not support role-based access
control principles, a role server may also be re-
quired to provide that functionality.” The role
server will issue users with role certificates, based
on user-role assignments and the role hierarchy,
which then have to be evaluated by the workflow
engine when the worklists are assembled.

From the brief comments above, it is clear that the
integration of CoAP into a commercial workflow sys-
tem is far from arbitrary. It presents interesting chal-
lenges that will have to be addressed through a va-
riety of approaches.

Conclusion

This paper identified various kinds of conflicts that
exist when considering separation of duty require-
ments in workflow environments. CoAP is suggested
as a way to handle the administration of separation
of duty requirements in workflow examples. With
CoAP we identify users, roles, permissions, and tasks
that together may result in fraudulent activities. The
simplicity of the paradigm allows administrators to
easily specify static and dynamic separation of duty
requirements while maintaining complex relation-
ships within the access control system.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It was further suggested that the additional require-
ment of “strict least privilege” suggests special at-
tention be given to the design of role hierarchies and
the association of tasks with those roles. Future work
will concentrate on the role of engineering require-
ments for role-based workflow environments.

Movements in the area of workflow also introduce
new and exciting challenges not addressed in this pa-
per. In particular, the field of collaborative comput-
ing and workflow computing share several synergies
and will, eventually, converge. Convergence brings
about an interesting question regarding the task ab-
straction, which then may include collaborative tasks.
There is also a demand for workflow systems to sup-
port work that is less structured and where all the
enumerations of the paths cannot be exactly predict-
ed.” This more ad hoc approach to workflow man-
agement will have a profound impact on the way in
which we specify access control requirements.

**Trademark or registered trademark of Microsoft Corporation
or Oracle Corporation.

Cited references and note

1. F.E. Allen, “Turning Points in Interaction with Computers,”
IBM Systems Journal 38, Nos. 2&3, 135-138 (1999).
2. D.Hollingsworth, The Workflow Reference Model, WFMC-TC
1003, Issue 1.1, Workflow Management Coalition (January
1995); available from www wtmc.org.
3. Information Processing Systems—Open Systems Interconnec-
tion—Basic Reference Model-—Part 2: Security Architecture,
ISO 7498-2, International Organization for Standardization
(1989).
4. F.Leyman and D. Roller, Production Workflow: Concepts and
Technigues, Prentice Hall, Upper Saddle River, NJ (2000).

. The Workflow Management Coalition refers to activities but
recognizes tasks as a synonym. See Terminology & Glossary,
WEMC-TC1011, Issue 2.0, Workflow Management Coalition
(June 1996); available from www.wfmc.org.

6. E. Bertino, E. Ferrari, and V. Atluri, “Specification and En-
forcement of Authorization Constraints in Workflow Man-
agement Systems,” ACM Transactions on Information and Sys-
tem Security, 65-104 (February 1999).

7. J. Barkley, Workflow Management Employing Role-Based Ac-
cess Control, U.S. Patent No. 6,088,679 (July 11, 2000).

8. M. H. Kang, J. 8. Park, and J. N. Froscher, “Access Control
Mechanisms for Inter-Organizational Workflow,” Proceed-
ings of the 6th ACM Symposium on Access Control Models and
Technologies SACMAT 2001, Chantilly, VA (May 3-4,2001),
pp. 66-74.

9. G.-J. Ahn, R. S. Sandhu, M. Kang, and J. Park, “Injecting
RBAC to Secure a Web-Based Workflow System,” Proceed-
ings of the Sth ACM Workshop on Role-Based Access Control,
Berlin (July 26-28, 2000).

10. R. S. Sandhu, E. I. Coyne, H. L. Fenstein, and C. E. You-
man, “Role-Based Access Control Models,” Computer 29, No.
2, 38-47 (February 1996).

11. J. H. Saltzer and M. D. Schroeder, “The Protection of In-

w

iBM SYSTEMS JOURNAL, VOL 40. NO 3, 2001

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

26.

27.

formation in Computer Systems,” Proceedings of the IEEE
63, No. 9, 1278-1308 (1975).

D. D. Clark and D. R. Wilson, “A Comparison of Commer-
cial and Military Computer Security Policies.” Proceedings
of IEEE Symposium on Security and Privacy (April 1987). pp.
184-194.

R. Sandhu, “Transaction Control Expressions for Separation
of Duties,” Proceedings of the 4th Aerospace Computer Secu-
rity Conference (December 1988), pp. 282-286.

R. Sandhu, “Separation of Duties in Computerized Informa-
tion Systems,” Proceedings of IFIP WG 11.3 Workshop on Da-
tabase Security (September 1990).

M. J. Nash and K. R. Poland, “Some Conundrums Concern-
ing Separation of Duty,” Proceedings of the 1990 IEEE Sym-
posium on Security and Privacy (May 1990), pp. 201-207.
D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Rolec-Based Ac-
cess Control (RBAC): Features and Motivations,” Proceed-
ings of the 1995 Computer Security Applications Conference
(December 1995), pp. 241-248.

R. Simon and M. E. Zurko, “Separation of Duty in Role-
Based Environments,” Proceedings of the 10th Computer Se-
curity Foundation Workshop, Rockport, MA (Junc 10-12,
1997), pp. 183-194.

D. R. Kuhn, “Mutual Exclusion of Roles as a Means of Im-
plementing Separation of Duty in Role-Based Access Con-
trol Systems,” Proceedings of the 2nd ACM Workshop on Role-
Based Access Control, Fairfax, VA (October 1997), pp. 23—
30.

V.D. Gligor, S. 1. Gavrila, and D. Ferraiolo, “On the Formal
Definition of Separation of Duty Policies and Their Com-
position,” Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA (May 3-6, 1998), pp. 172-183.

M. Nyanchama and S. Osborn, “The Role-Graph Model and
Contflict of Interest,” ACM Transactions on Information and
Systems Security 2, No. |, 3-33 (February 1999).

G.-J. Ahn and R. S. Sandhu, *The RSL99 Language for Role-
Based Separation of Duty Constraints,” Proceedings of the
4th ACM Workshop on Role-Based Access Control, Fairfax,
VA (October 28-29, 1999), pp. 43-54.

R. K. Thomas and R. 8. Sandhu, “Towards a Task-Based Par-
adigm for Flexible and Adaptable Access Control in Distrib-
uted Applications,” Proceedings of the 1992-1993 ACM
SIGSAC New Security Paradigms Workshop, Little Compton.
RI (1993), pp. 138-142.

R. K. Thomas and R. S. Sandhu, “Conceptual Foundations
for a Model of Task-Based Authorizations,” Proceedings of
the IEEE Computer Security Foundations Workshop, New
Hampshire, IEEE Press (1994).

R. K. Thomas and R. S. Sandhu, “Task-Based Authorization
Controls (TBAC): A Family of Models for Active and En-
terprise-Oriented Authorization Management,” Database Se-
curity, XI: Status and Prospects, T. Y. Lin and S. Qian, Ed-
itors, Chapman and Hall, London (1997), pp. 166-181.

S. Oh and S. Park. “Task-Role Based Access Control (T-
RBAC): An Improved Access Control Model for Enterprise
Environment,” Proceedings of the 11th International Confer-
ence on Database and Expert Systems Applications, DEXA 2000
(2000), pp. 264-273.

S. Perelson and R. A. Botha, “Conflict Analysis as a Means
of Enforcing Static Scparation of Duty Requirements in
Workflow Environments,” South African Computer Journal.
No. 26, 212-216 (November 2000).

V. Atluri and W-K. Huang, “An Authorization Model for
Workflows,” Proceedings of the Fifth European Symposium on
Research in Computer Security, Rome, Italy, and Lecture Notes

BOTHA AND ELOFF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

681

in Computer Science, No. 1146, Springer-Verlag, Berlin (Sep-
tember 1996), pp. 44-64.

28. D. Cholewka, R. A. Botha, and J. H. P. Eloff, “A Context-
Sensitive Access Control Model and Prototype Implemen-
tation,” Proceedings of the IFIP TC11 15th International Con-
ference on Information Security (SEC2000). Beijing, China
(2000), pp. 341-350.

29. N. W. Paton and O. Diaz, *Active Database Systems,” Com-
puting Surveys 31, No. 1, 63-103 (March 1999).

30. C.Petrie and S. Sarin, “Beyond Documents: Sharing Work,”
IEEFE Internet Computing, 34-36 (May-Junc 2000).

Accepted for publication April 30, 2001.

Reinhardt A. Botha Fuculty of Compurer Studies, Port Elizabeth
Technikon, University Way, Port Elizabeth 6000, South Africa (elec-
tronic mail: rbotha@computer.org). Mr. Botha is a senior lecturer
at the Port Elizabeth Technikon and a doctoral candidate at the
Rand Afrikaans University. He has been involved in the design
and implementation of electronic document management systems,
as well as back-end systems integration since 1990. His main re-
search interests include workflow, information security, and hu-
man-computer interaction. He received an M.Sc. degree from the
Rand Afrikaans University in 1997.

Jan H. P. Eloff Department of Computer Science, Rand Afrikaans
University, P.O. Box 524, Auckland Park 2006, South Africa (clec-
tronic mail: eloff@rkw.ran.ac.za). Dr. Eloft received a Ph.D. de-
gree in computer science from the Rand Afrikaans University.
He gained practical experience by working as a management con-
sultant specializing in the field of information security. Since 1988
he has been a full professor in the Department of Computer Sci-
ence at the Rand Afrikaans University. He is chairperson of the
Special Interest Group in Information Security, affiliated with the
Computer Society of South Africa. He is also chairperson of the
International Working Group 11.2 of [FIP specializing in small
systems security. He has published extensively in a wide spectrum
of accredited international subject journals. Many acclaimed in-
ternational and national conferences were organized and con-
ducted under his leadership, and he has presented papers at lead-
ing information security conferences on an international level.
Dr. Eloff is an evaluated researcher from The National Research
Foundation (NRF), South Africa, and he is an advisor to indus-
try on various information security projects.

682 BOTHA AND ELOFF IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

