
Research Article

Separationof Duty Administration

S Perelsona R Bothaa JEloffb

aFacultyof ComputerStudies,Port ElizabethTechnikon,Port Elizabeth�
stephen,reinhard � @petech.ac.za

bDepartmentof ComputerScience, RandAfrikaansUniversity, Johannesburg
eloff@rkw.rau.ac.za

Abstract

Accesscontrol administration is a huge task. Administration tools shouldassistthe administrator in ensuringthat the
accesscontrol requirementsare met. Oneexampleof an accesscontrol requirementis Separation of Duty (SoD).SoD
requirementsspecifythatnosinglepersonmayhavesufficientauthorityto completea businessprocessunilaterally.
TheSoDA prototypeadministration tool hasbeendevelopedto assistadministrators with the administration of SoDre-
quirements.It demonstrateshowthespecificationof bothStaticandDynamicSoDrequirementscanbedonebasedon the
“conflicting entities” paradigm. StaticSoDrequirementsmustbeenforcedin theadministration environment.TheSoDA
prototype, therefore, enforcesthespecifiedstaticSoDrequirements.
Keywords: InformationSecurity, AccessControl Administration,Separationof Duty
Computing Review Categories:D4.6,H2.7,H4.1,K6.5

1 Intr oduction

Security administratorsmust managean ever-increasing
numberof systemsundertheir control. In recentyears,
Role-basedAccessControl(RBAC) hasbeenpromotedas
a possiblesolution to the resultantadministrationnight-
mares[5]. With the increasingamountof information
availableelectronically, it is necessarynot only to find a
meansto easethejob of thesecurityadministrator, but also
to ensurethattheinformationis protectedandmanagedac-
cordingto organizationalpolicies.

Oneexpressionof organizationalpolicy canbefound
in the age-old principle of Separationof Duty (SoD).
SaltzerandSchroeder[10] identifiedSoD,or “separation
of privilege” asthey calledit, asoneof eightdesignprin-
ciples for the protectionof information in computersys-
tems.They built on theobservationthata securitysystem
with two keys is morerobustandflexible thanonethatre-
quiresasinglekey. No singleaccident,deceptionorbreach
of trust is thereforesufficient to compromisethe system.
ClarkandWilson [4] identifiedSoDasoneof thetwo ma-
jor mechanismsthat can be implementedto ensuredata
integrity. SoDservesasa mechanismto counteractfraud
anderror, while assuringcorrespondencebetweensystem
objectsandtherealworld objectsthatthey represent.

Furthermore,they [4] assertedthat,at thepolicy level,
processesaredividedinto tasks,with eachtaskbeingper-
formed by a different person. [1] and [8] observed that
existing SoDmodelsdo not take work processesinto con-
sideration. Work processesare often facilitatedthrough
theuseof workflow systems.Workflow systemsarecon-
structedaroundtasksthatarelinkedaccordingto business
rulesto representabusinessprocess.Thispaperintroduces

thetaskasanadditionalbuilding blockfor expressingSoD
requirementsin workflow systems.

Evenwith theintroductionof thetaskabstraction,the
administrationof SoD requirementsremainsa mammoth
task. In a large organization,theremay be thousandsof
objectsthatrequireprotection.Theorganizationmayhave
thousandsof users,filling hundredsof differentpositions
in theorganization.Theidentificationof all theaccessre-
quirementsrequiresahugeeffort. It is virtually impossible
to maintainconsistency whenperformingsuchahugetask,
unlessthe administrationtools provide appropriateassis-
tance.

The SoDA prototypeis introducedto assistsecurity
administratorswith the specificationof accesscontrol re-
quirementsaccordingto Role-basedAccessControl prin-
ciples. More specifically, theSoDA prototypeis intended
to assistwith the administrationof SoD requirements.In
orderto demonstratethe“conflicting entities”administra-
tion paradigmasusedwithin theSoDA prototype,the re-
mainderof thepaperis structuredasfollows. First,a brief
review of role-basedaccesscontrolprinciplesis provided.
Thereafter, the additionalconceptof a taskis introduced.
This is followed by a discussionon the useof the “con-
flicting entities” paradigmto specify SoD requirements.
Finally, we illustratehow the SoDA prototypeis usedto
administerSoDrequirements.

2 BasicConcepts

This sectionwill provide thenecessarybackgroundto ex-
plain theprincipleof separationof duty within role-based
workflow systems.

64 SACJ / SART, No 27,2001

Research Article

Figure1: Form designenvironmentusedto createa “Pur-
chaseOrder”

2.1 Role-basedAccessControl

The conceptof a role is pivotal in role-basedaccesscon-
trol. Usersreceive accesspermissionsbasedon the roles
that they mayassume.Usersareanyone/anything thatac-
cessesresourcesin the system.A usermay, therefore,be
an individual or anotherprogram.Rolesoftencorrespond
to positionsin theorganizationalstructure.It is thusa se-
manticconstruct,createdto easethemanagementof access
rights. Permissionscanbe interpretedasthe right to exe-
cuteacertainmethodof anobject.

TheSoDA prototypeconsidersanobjectto beadocu-
mentcontainingvariousfield objects.Usersmayperform
differentactionson the field objects,e.g. addanotherin-
stanceof thefield object,deleteafield object,edit thecon-
tentsof afield objector view thecontentsof afield object.
Individual field objectsmaybegrouped,resultingin com-
positeobjects. Figure 1 shows how a hierarchicalview,
representingobjectcontainment,canbeusedto createthe
‘Internal PurchaseOrder’ object.Permissionscouldrelate
to any of the field objects,or compositefield objects,in
the‘InternalPurchaseOrder’object.Permissionsassigned
to anobjectareinheritedfor objectscontainedby thatob-
ject. For example,thepermissionto editEmployeeDetails
will imply thepermissionto editall fieldsthatform partof
EmployeeDetailson theform.

Rolesmay be relatedthrougha partial order. A role
inheritspermissionsassignedto therolesthatarejunior to
it in thepartialorder. For example,the‘Manager’rolemay
be consideredseniorto the ‘Supervisor’ role. The ‘Man-
ager’ role will, therefore,inherit thepermissionsassigned
to the ‘Clerk’ role. Figure 2 shows how the SoDA pro-
totypemanagestheassociationsbetweenroles. In SoDA,
rolesarerelatedto otherroleswithin disjoint, namedrole
networks. Thecombinationof all namedrole networks is
similar to the role-graphpresentedby [8], if an artificial
maximumandanartificial minimumrolewereintroduced.

Theconceptsemployedin RBACareindeedverypow-
erful. However, Sandhuetal. [11] observedthat:

“RBAC is not a panaceafor all accesscontrol is-
sues. More sophisticatedmethodsare required

Figure2: SoDA associatesrolesaccordingto namedrole
networks

to deal with situationsthat control operationse-
quences.[. . .] Otherforms of accesscontrol can
belayeredon top of RBAC for this purpose.”

Workflow Systemsprovidesanenvironmentwherethe
sequencesof operationsarecontrolledaccordingto busi-
nessrules.Thenext sectionintroducesworkflow concepts,
paving thewayfor theexpressionof accesscontrolpolicies
in termsof sequenceof operations.

2.2 Workflow Concepts

Workflow Systemsareconcernedwith theautomationand
facilitation of businessprocesses[6]. Businessprocesses
aredefinedthroughprocessdefinitions. A processdefini-
tion consistsof setsof tasks,connectedaccordingto busi-
nessrules.

Theprocessdefinition is enactedby theworkflow en-
gine. For eachenactmentof thebusinessprocess,e.g. for
each‘Internal PurchaseOrder’ thatis issued,a processin-
stanceis generated.Task instancesaregeneratedon de-
mand,basedon thebusinessrulesencapsulatedaspartof
theprocessdefinition.

SoDA is a tool that focuseson supportingaccesscon-
trol administration.Accesscontrol requirementsare,typ-
ically, describedwithin the generalcontext of a business
processandnot for a specificenactmentof the workflow.
TheSoDA prototypeis, therefore,only concernedwith the
processandtaskdefinitions.

The “conflicting entities” paradigmrelieson restrict-
ing the associationsbetweenall the entities that are in-
volved,namelyuser, roles,permissionsandtasks.

3 SoDA – The “conflicting entities”
paradigm

Separationof duty requirementsare implementedby re-
strictingtheassociationsallowedbetweenentities.This is
to ensurethata singleusermaynot receive too many per-
missions.An exampleof suchaconstraintmayspecifythat

SART / SACJ, No 27,2000 65

Research Article

“the permission� to approveanorderandthepermissionto
issueanordermaynot beassignedto thesamerole”.

Kuhn [7] explainedhow mutual exclusive roles, i.e.
rolesthatmaynotbeassignedto thesameuser, canbeused
to enforceSoD.Ahn andSandhu[1] showedthroughtheir
RSL99specificationlanguagethat thereareseveral ways
of expressingsimilar SoDrequirements.SoDA builds on
theseobservations,andextendsit with theconceptof con-
flicting tasks.

The term “conflicting entities” doesnot indicatethat
thereareany disharmony betweentheentities. The“con-
flict” refer, ratherto thedisharmony thattheentitiescould
causebetweenthe actualandthe desiredstateof the sys-
tem.Conflict thusindicatesapotentialundesirablestateof
integrity. The“conflicting entities”paradigm,asemployed
in theSoDA prototype,identifiesfour typesof conflict [3]:

Conflicting permissions are permissionsthat can result
in unnecessarypower if bestowedon thesameperson.
For example,a personwith the permissionsrequired
for financialauditsshouldnot receive permissionsto
approve financial transactions.If this were allowed,
auditorscouldlosetheir independence.

Conflicting users areuserswho will togetherhave suffi-
cientpowerto collude,andarelikely to doso. In prac-
tice,thismaybefamily membersor previouslyknown
accomplices.

Conflicting roles arerolesthat togetherpossesstheabil-
ity to conspire.Thismeansthatthey areassignedcon-
flicting permissions.Consider, for example,the ‘Au-
ditor’ and ‘Financial Manager’ roles. It is common
practicethat auditorsand financial managersshould
be independent.The rolesmay have certainpermis-
sions,e.g. ‘view order’, in common. However, the
‘approve order’ and‘approve audit’ permissionsmay
beassignedonly to oneof theseroles.

Conflicting tasks are tasksrequiring conflicting permis-
sions to complete. This would, for example, imply
that the‘Audit PurchaseOrder’ taskandthe‘Approve
PurchaseOrder’ taskwould be conflicting sincethey
require the ‘approve order’ and ‘approve audit’ per-
missions.Thesepermissionsare,in turn,conflicting.

The“conflicting entities”paradigmis basedontheob-
servationthatpower is vestedin permissions.Theessence
of the “conflicting entities” paradigmlies, therefore,in
conflicting permissions.It is argued,however, that tasks
provide a morenaturalabstractionfor thespecificationof
SoDrequirements.The“conflicting entities”paradigmal-
lows for thespecificationof bothStaticandDynamicSoD
requirements.

StaticSoDrequirements,on theonehand,control the
associationsbetweenentitiesduring administrationtime.
They would, for example,disallow auserto beassignedto
a role if anSoDrequirementwould beviolated.Dynamic
SoD,on the otherhand,doesnot restrictassociationsbe-
tweenentitiesat administrationtime. Instead,it controls

theexecutionof permissionsat run-time.It would, for ex-
ample,allow auserto belongto the‘Manager’and‘Clerk’
roles.However, duringrun-time,theuserthatinitiatedthe
purchaseorder(usingthe ‘Clerk’ role) will not beableto
approvethatpurchaseorder(usingthe‘Manager’role).

Thespecificationof bothStaticandDynamicSoDre-
quirementswithin theSoDA prototypeis similar. Thiswill
bediscussedin Section4. StaticSoDrequirementsmust,
however, also be enforcedin the administrationenviron-
ment. Theenforcementof StaticSoDrequirementsin the
SoDA prototypeis thusdiscussedin Section5.

4 Separationof duty specificationin
SoDA

The SoDA prototypeallows for the specificationof con-
flicting users,conflictingroles,conflictingpermissionsand
conflictingtasks.A distinctionis madebetweenstaticand
dynamicSoD.Conflictsarebasedon thesetsU , R, P and
T, representingtheuser, role, permissionandtaskentities
respectively. P is definedasP � 2O � M, whereO represents
the objectsand M the methodsthat may be performed.
Note that not all the methodsmay necessarilybe defined
on all objects.Thus,the setof permissionsis a subsetof
thepowerset.

The specificationof the conflictsis donethroughthe
sets:

CUD � CUS � CRD � CRS � CPD � CPS � CTD � CTS �

The samenaming convention is followed. CX denotes
conflicting entitiesof type X, and the subscriptindicates
whetherthe conflict must be checked statically (CXS) or
dynamically(CXD). The“conflicting entities”relationsare
definedin a symmetricandnon-reflexivefashion:

CXY � X � X suchthat � xi 	
 x j�
xi � x j �� CXY ��� �

x j � xi �� CXY

Thespecificationfor all 8 setscanbederivedby replacing
X with theappropriateentity (U ,R,P or T) andY with Sor
D, for StaticandDynamicrespectively.

Figure 3 shows how conflicting tasksare identified
within theSoDA prototype.Theotherconflictsarespeci-
fied in a similar manner. The interpretationof thevarious
conflictsis summarizedin Table1.

Theenforcementof DynamicSoDrequiresinterpreta-
tion of the processinstance.Thus it is the responsibility
of theworkflow system.Consequently, it falls outsidethe
scopeof the administrative tool. For a moredetaileddis-
cussingregardingdynamicSoD the interestedreaderare
referedto [3]. StaticSoD must,however, be enforcedin
theadministrationenvironment.Thenext sectiondiscusses
how this is implementedin theSoDA prototype.

66 SACJ / SART, No 27,2001

Research Article

Conflict Static Dynamic

Conflicting
Roles

May not have thesameuser(or
conflictingusers)asmembers

May not be assumedby the
sameuser(or conflicting users)
in oneprocessinstance

Conflicting
Permissions

Must be assignedto conflicting
roles

May not be exercised by the
sameuser(or conflicting users)
for aspecificprocessinstance

Conflicting
Users

May notbelongto thesamerole
or conflictingroles

May not perform conflicting
tasks in the sameprocessin-
stance

Conflicting
Tasks

Must be assignedto conflicting
roles

May not be executed by the
sameuser(or conflicting users)
in thesameprocessinstance

Table1: Interpretationof conflictsaccordingto the“conflicting entities”paradigm

5 Static Separationof Duty enforce-
ment in SoDA

In order to enforceStatic SoD, the SoDA prototypeen-
suresthattheintegrity of theassociationsbetweenentities
is maintained.If anactioncannotbeperformed,remedial
actionsaresuggested.For example,if conflictingtasksare
assignedto non-conflictingroles,theuseris giventheop-
tion of makingtherolesconflicting. Theassociationsthat
areallowedaresummarizedin Table2 [9].

To illustrate how the SoDA prototypemaintainsthe
associations,this sectionwill review differentstaticSoD
implementationsof therequirement:“A personwhoissues
stockmay never approve an order”. Threeapproachesto
enforcingthis SoDrequirementin a staticfashionarepro-
posed.This is doneby rephrasingtheSoDrequirementin
thefollowing ways:

(SoD1) A managerandastockcontrollermaynotperform
thesametasks.

(SoD2) The ‘Issue Stock’ permissionand the ‘Approve
Order’ permissionmay not be assignedto the same
user.

(SoD3) The ‘IssueStock’ taskmay not be performedby
someonewho performsthe‘ApproveOrder’ task.

TheseSoD constraintswill be implementedas con-
flicting roles,conflictingpermissionsandconflictingtasks.
Conflictinguserscanbeusedin combinationwith these.

Conflicting usersare interpretedin the sameway as
in [AS99]. If two usersareconflicting, it meansthat the
chancesof themcolludingarevery high. In essence,they
should,therefore,be treatedasif they wereoneuser. For
example,if two tasksmay not be performedby the same
user, two conflictingusersmaynot performthemeitheras
the chancesof a conspiracy arehigh. We shall now con-
siderhow eachof theapproachescan,in turn, behandled
in theprototype.

5.1 Conflicting Roles

First consider(SoD1)- A manageranda stockcontroller
maynot performthesametasks.

Sincemanagersapprove orders,andstockcontrollers
issuestock,the‘Manager’rolein the‘Admin’ rolenetwork
andthe‘StockController’ role in the‘Stores’rolenetwork
maybesetto conflict. Due to the inheritancepropertyof
role networks, conflicting roles cannotexist in the same
role network. If conflictingroleswereallowedin onerole
network, the topmostrole in that role network would in-
herit thepermissionsof bothconflictingroles.Thisclearly
defeatsthe purpose.A role may conflict with more than
onerole in anothernetwork. Conflictsare,however, inher-
itedupthepartialorderandsettingmorethanoneconflict,
assuch,maynot be necessary. The SoDA prototypewill
removeany unnecessaryconflict.

In Figure4, the‘StoresManager’inheritstheconflict
setupon‘Stock Controller’. ‘StoresManager’will, there-
fore, alsoconflict with the ‘Manager’ role in the ‘Admin’
role network. In Figure3, the ‘Approve order’ and‘Issue
stock’ tasksweremadeconflictingtasks.Conflictingroles
andconflicting tasksimpacton theallowableassociations
asfollows. Only non-conflictingusersmaybeassignedto
conflicting roles. Conflicting tasksmustbe performedby
conflicting roles. Recall that the ‘Stock Controller’ role
andthe ‘StoresManager’role wereidentifiedasconflict-
ing with the ‘Manager’ role. Figure5 depictsthe ‘Man-
ager’ role asbeingassignedto the ‘Approve Order’ task.
Figure 5 shows, furthermore,that subsequentlyonly the
two rolesconflictingwith the ‘Manager’ role, namelythe
‘Stock Controller’ and‘StoresManager’roles,maybeas-
signedto the‘issuestock’task.If two tasksareinitially not
indicatedto be conflicting, but they areassignedto con-
flicting roles,thetasksaremadeconflictingtasks.

5.2 Conflicting Permissions

Now consider(SoD2)– The‘IssueStock’ permissionand
the‘ApproveOrder’permissionmaynotbeassignedto the
sameuser.

The permissionsinvolved are editing the ‘Approval’

SART / SACJ, No 27,2000 67

Research Article

May beassociated Roles
with Conflicting Non-conflicting

Conflicting N YUsers
Non-conflicting Y Y

Conflicting Y NPermissions
Non-conflicting Y Y

Conflicting Y NTasks
Non-conflicting Y Y

Table2: StaticSoD– Allowableassociations

Figure5: Conflictingtasksmustbeassignedto conflictingroles

Figure3: Specifyingconflictingtasks

and‘IssueRec’field groupson the ‘Internal OrderForm’
object. Conflicting permissionsmay only be assignedto
conflictingroles.If thisis notenforced,conflictingpermis-
sionscould be assignedto conflicting users. Thesecon-
flicting usersbelongto non-conflictingroles,which have
conflicting permissionsthat were incorrectly assignedto
the non-conflictingroles. This clearly opensthe door for
a conspiracy. TheSoDA prototype,therefore,only allows
conflictingrolesto receiveconflictingpermissions.

If therolesarenot conflicting,they aremadeconflict-
ing, subjectto additionalintegrity checking.Rolescannot
bemadeconflictingif conflictingusersareassignedto the
saidroles. It can,therefore,beseenthatevenif the‘Man-

Figure4: Conflictingroles

68 SACJ / SART, No 27,2001

Research Article

ager’ and‘Stock Controller’ roleswerenot initially iden-
tified to beconflicting,they will bemadeconflictingwhen
the two conflicting permissionsareassignedto thesetwo
roles.Similar to section4, thetasksassignedto thesetwo
roleswill alsobemadeconflicting.

5.3 Conflicting Tasks

Consider(SoD2c)– The‘Issuestock’ taskmaynotbeper-
formedby someonewhomayperformthe‘Approveorder’
task. In section5.1, it was shown how conflicting roles
couldonly be assignedto conflicting tasks. If conflicting
roles were assignedto tasks,thesetaskswere automati-
cally madeconflicting. This approachcanbe considered
to bethereverseof that. Two tasksaredefinedto becon-
flicting. Subsequently, the rolesthat mustbe assignedto
the usermustbe conflicting. If two non-conflictingroles
areassigned,therolesaremadeconflicting,subjectto ase-
riesof integrity checksbeingperformed.It is evidentthat
the sameresult is achieved, irrespective of the approach
used,sinceautomaticmaintenanceof conflictrelationships
is performed.

Theresultsof theconflictingrole andconflictingtask
approachesarethusidentical. Theconflicting permission
approachcan,however, beconsideredstricter. Conflicting
permissionsmustbeperformedby conflictingroles.How-
ever, conflictingrolesdonot only haveconflictingpermis-
sions.For example,the ‘Manager’and‘Stock Controller’
rolesareconflicting, but both shouldstill be allowed the
‘view purchaseorder’ permission.Theconflictingpermis-
sions‘Edit Approval’ and ‘Edit Issuerec’may, however,
alsobe assignedto the ‘Manager’ and‘Stock Controller’
rolesrespectively.

6 Conclusion

This paper demonstrated the “conflicting entities”
paradigmasa way of specifyingSoDrequirements.This
paradigmusesthe task abstractionto intuitively define
separationof duty requirementsthat involve sequenceof
operations. It was shown that both Static and Dynamic
SoD requirementscan be formulated according to the
“conflicting entities”paradigmin theSoDA prototype.

It was, furthermore,shown that the SoDA prototype
enforcesStaticSoDrequirements.By specifyingoneSoD
requirementin threedifferentways,it wasexplainedthat
equivalentresultscanbeachieved.

It shouldbenotedthatStaticSoDrequirementsareex-
tremelyrestrictive on theorganizationsfunctioning. Con-
sider, for example(SoD1). To assumethatamanagersand
a stockcontrollercould never do the samejob could be,
especiallyfor a smallcompany, very restrictive. Dynamic
SoDrequirementsaddressesthis issueby imposingthere-
strictionsperprocessinstance.

Otherissuesthatcouldbeof concernarethepotential
of a lock-outsituation.A situationcouldarisethat,for ex-
amplenorolesareavailableto assignto atask.Thiswould
immediatelybe noticableto the systemadministratorand

he/shewill have to rectify the situationmanually. How-
ever, duetheextremelystrict restrictionsimposedby static
separationof duty, it is likely to be usedsparingly. This
makes the likelihood of a lock-out occurring extremely
small and thus feasiblefor the adminstratorto manually
correct. The issueof lock-out occuringdue to dynamic
SoD requirementsare much more complex and state-of-
the-artwork regradingthatmaybefoundin [2].

References

[1] G-J.Ahn andR. S.Sandhu.TheRSL99languagefor
role-basedseparationof dutyconstraints.In Proceed-
ingsof the4thACM WorkshoponRole-basedAccess
Control, pages43 – 54,28 – 29 Oct.1999.

[2] E.Bertino,E.Ferrari,andV. Atluri. Specificationand
enforcementof authorizationconstraintsin workflow
managementsystems. ACM Transactionson Infor-
mationandSystemSecurity, 2(1):65–104,Feb1999.

[3] R. A. BothaandJ. H. P. Eloff. Separationof duties
for accesscontrolenforcementin workflow environ-
ments.IBM SystemsJournal, 40(3),2001.

[4] D. D. ClarkandD. R.Wilson. A comparisonof com-
mercialandmilitary computersecuritypolicies. In
Proceedingsof the 1987IEEE Symposiumon Secu-
rity andPrivacy, pages184– 194,Apr. 1987.

[5] D. F. Ferraiolo,J. F. Barkley, and D. R. Kuhn. A
role-basedaccesscontrolmodelandreferenceimple-
mentationwithin a corporateintranet. ACM Trans-
actionon InformationandSystemSecurity, 2(1):34–
64,Feb. 1999.

[6] D. Hollingsworth. The workflow referencemodel.
TechnicalReport TC-00-1003,Workflow Manage-
mentCoalition,www.wfmc.org,Jan1995.

[7] D. R. Kuhn. Mutual exclusionof rolesasa means
of implementingseparationof duty in role-basedac-
cesscontrolsystems.In Proceedingsof the2ndACM
Workshopon Role-basedAccessControl, pages23 –
30,Oct.1997.

[8] M. NyanchamaandS.Osborn.Therole-graphmodel
andconflict of interest.ACM Transactionson Infor-
mationandSystemSecurity, 2(1):3– 33,Feb. 1999.

[9] S. Perelsonand R. A. Botha. Conflict analysisas
a meansof enforcing static separationof duty re-
quirementsin workflow environments.SouthAfrican
ComputerJournal, (26):212– 216,Nov. 2000.

[10] J. H. SaltzerandM. D. Schroeder. The protection
of informationin computersystems.Proceedingsof
IEEE, 63(9):1278– 1308,1975.

[11] R. S. Sandhu,E. J.Coyne,H. L. Fenstein,andC. E.
Youman. Role-basedaccesscontrol models. IEEE
Computer, 29(2):38– 47,Feb1996.

SART / SACJ, No 27,2000 69

