

Privacy in the Net

INFORMATIK • INFORMATIQUE 6/2000

1

A Model for Security in Agent-based Workflows

Henrik Stormer, Konstantin Knorr, Jan H.P. Eloff

With the rise of global networks like the Internet the importance of workflow environments is growing.
However, security questions in such environments often only address secure communication. Other
important topics are role-based access control and separation of duty. This paper shows how mobile agents
can be used to implement these and other security features in workflows.

Keywords:

 agent, fraud, role, security, separation of duties,
workflow

Introduction

Workflow environments have hugely benefited from the
technical advancements made available by the Internet over the
last years. Many workflow environments today are implement-
ed over public networks such as the Internet. Because workflow
environments in most situations represent the “bread-and-
butter” of a company, the implementation thereof has raised
serious information security problems. Organizations are con-
cerned about their privacy on the net as well as of the privacy
of client information. Similar to other systems the information
security requirements of a workflow system are modelled on
the ISO 7498-2 standard. This standard proposes the following
information security services: identification and authentica-
tion, authorization (access control), confidentiality, integrity,
and non-repudiation. Mechanisms for each of these services
must be employed to secure a workflow environment.

Identification and authentication, confidentiality and non-
repudiation services are implemented similarly to those in non-

workflow environments. The services of authorization (with
the main focus on access control) and integrity require special
design considerations and implementation details. For example
access control requires the modelling of access based on the
type of tasks to be performed on the objects travelling around
in a workflow environment. A unique feature of integrity in a
workflow environment is to preserve the contents of objects
according to business rules. These business rules are linked to
the operational characteristics of an organization. There is a
need for new approaches modelling the design and implemen-
tation of the access control and integrity services in workflow
environments.

Currently available research results in the area of access
control are dominated by models of role-based access control
(RBAC). RBAC shows good potential to be successfully em-
ployed in a workflow system. The information security princi-
ple of separation of duties (SoD) is important in the modelling
of integrity in a workflow environment. A physical and logical
separation of tasks can improve the prevention of fraudulent
activities.

Agent technology shows great potential in the field of work-
flow systems. Furthermore, information security aspects like
RBAC and SoD can be considered in the agent-based imple-
mentation of workflows.

Therefore, the primary aim of this paper is to give an archi-
tectural model and a framework for implementing access con-
trol and integrity in a workflow environment. Intelligent and
mobile agents are applied to current workflow technology to
meet access control and integrity requirements.

The remainder of the paper has the following structure:
Section 2 gives an introduction to workflow environments and
agents. Section 3 describes a sample process which will be
used for illustration purposes throughout the paper. An archi-
tecture for agent-based workflows and its different agent types
are discussed in Section 4. Section 5 introduces the notions of
RBAC and SoD and gives a formal model for them within the
workflow environment. Implementation of several security
features in an agent-based workflow system is the topic of
Section 6. Section 7 gives a conclusion.

1

Henrik Stormer has studied computer science at the University
of Saarbrücken (Germany). He is currently a PhD student at the
Department of Information Technology at the University of
Zurich. His research interests are mobile agents and agent-based
workflow systems. stormer@ifi.unizh.ch

Konstantin Knorr studied mathematics at the universities of
Mainz and Frankfurt (Germany) and is currently a PhD student at
the Department of Information Technology, University of Zurich.
His research interest are formal models of security and security in
workflow environments. knorr@ifi.unizh.ch

Jan Eloff is a professor in computer science at Rand Afrikaans
University, South Africa. He is currently a visiting professor at the
University of Zurich, Switzerland. He is chairperson of the Spe-
cial Interest Group in Information Security and is chairperson of
the International Working Group 11.2 of IFIP specialising in
small systems security. He is an evaluated researcher from the
National Science Foundation, South Africa. eloff@rkw.rau.ac.za

Privacy in the Net

2

INFORMATIK • INFORMATIQUE 6/2000

Background

This section gives background information on workflow
management issues and mobile agents.

Workflow management is an essential research area in com-
puter science. A workflow is an executable business process
whose modelling and execution is supported by a software
system called workflow management system (WfMS) [Georga-
kopoulos et al. 95]. Before a workflow can be executed, it has
to be described in a way the WfMS is able to understand. This
description is called a

process definition

. The definition has to
be made during

build time

 before a workflow can be executed.
During run time of the system many instances of the workflow
are generated according to the process definition. The main
elements of a process definition are tasks, objects, subjects,
roles, and the control flow. A process consists of several tasks
whose chronological and logical order is given through the
control flow. To describe a task, it has to be specified which
roles are granted access to which objects. Subjects can be asso-
ciated with persons but also with machines and computer
programs. [Leymann/Altenhuber 94].

The

Object Management Group

 defines a software agent as
“a computer program that acts autonomously on behalf of a
person or organization” [Crystaliz et al. 97]. The following
properties characterize agents:
• pro-active (support of the user’s work)
• adaptive (learning the user’s preferences or the ability to

work on different platforms)
• autonomous (limited communication with its creator)
• intelligent (making ‘intelligent’ decisions [Ferber 99])
• mobile (can actively migrate in networks to different

systems and move directly to the local resources, like data-
bases or application servers)

Before agents can be used, each system needs to install a so
called

agent-place

 to create, delete and execute agents. Agents
can migrate from an agent place to another performing the
work locally. Lange and Oshima [Lange/Oshima 99] give
reasons why to use agents: e.g. reduction of the network load,
overcoming of network latency and encapsulation of protocols.

An agent-based workflow is a workflow in which agents per-
form, coordinate, and support the workflow [Huhns/Singh 98].
In an agent-based workflow system, there exist different agent
types that manage the workflow. A process instance agent is
responsible for controlling one process instance. Newer archi-
tectures further split the functionality of a workflow system:

task agents, which are mobile and migrate to subjects which
perform some tasks of the workflow [Hawryszkiewycz/Deben-
ham 98], and personal agents which act as an interface between
the subject and other agents are introduced.

Example Workflow Environment

This section gives an example which will be used
throughout the paper for illustration purposes.

Six persons, also referred to as subjects,

A. Smith

,

B. Smith

,
who are brothers,

Carpenter

,

Butcher

,

Snyder

, and

Fisher

 are
working in a company. Figure 1 shows these subjects together
with their assigned roles. Note that every

Manager

 (or

Secre-
tary

) is an

Employee

, too. E.g.

Butcher

 is able to activate the
manager or the employee role. The partial order of roles builds
up a so called

role hierarchy

 – a well known modelling
approach [Scheer 94].

Figure 2 shows the process definition for a travel expense
claim. The process starts when an employee submits a travel
expense claim. Two Managers must approve this claim before
the money transfer is done by a secretary. Note that the tasks
are partially ordered, e.g.

submit

 precedes all other tasks but no
order is possible between

approve 1

 and

approve 2

.

Architecture of the Agent-based Workflow System

The architecture of the proposed agent-based workflow
system consists out of the following four agent types:

Process Instance Agent (PIA)

 The PIA is created by a subject,
which has to provide a complete and correct process defini-
tion. The process instance agent represents and manages an
instance of a workflow (according to the process definition
given) and controls its whole execution. In the example a
PIA is created for each travel expense claim of an employee
(e.g. Claim 157 of Butcher).

Task Instance Agent (TIA)

 The TIA is responsible for one task
in a process instance. It is created by the PIA and has to
search for a subject, deliver the task description and objects
items to the subject and the results back to the PIA. Refer-
ring to the example, a TIA is created for the transfer task of
Claim 157 of Butcher.

Worklist Agent (WLA)

 The WLA stores a mapping of all sub-
jects and their assigned roles (cf. Figure 1).

2

3

4

A. Smith

B. Smith

Carpenter

Butcher

Snyder

Fisher

Manager

Secretary

Employee

Fig. 1: Sample role definition and hierarchy

AND AND

approve 1

submit

approve 2

transfer

Manager

Employee Secretary

Manager

Fig. 2: Example of a process definition

Privacy in the Net

INFORMATIK • INFORMATIQUE 6/2000

3

Personal Agent (PA)

 A personal agent is the interface between
the subject and the incoming TIAs. It is immobile, controls
the incoming task requests from the TIAs, and coordinates
the communication between subject and TIA.

The basic idea in the handling of a workflow task is to create
a TIA for each task in the underlying process instance. The PIA
creates all TIAs according to the temporal and logical pre-
requisites of the workflow. E.g., the parallel execution of sever-
al tasks can be achieved by the creation of several TIAs simul-
taneously.

When the PIA creates a TIA for fulfilling task

t

, all and just
those objects and privileges which are needed for the task’s
execution are instantiated as part of the TIA. Next, the TIA has
to find a subject for task

t

. Therefore, it migrates to the WLA to
get a list of possible subjects to interact with

t

, qualifying by
means of role allocations and possibly other constraints. The
TIA chooses a subject

s

 randomly from the list and migrates to

s

: This is another security feature because the choice of the TIA
is not predictable and therefore fraud is complicated. Clark and
Wilson [Clark/Wilson 87] identified SoD as one of the two ma-
jor mechanisms that can be implemented to ensure data
integrity. They purposed the random selection of task partici-
pants in order to ensure that any attempted conspiracy is inher-
ently unsafe. More elaborate choices are possible but are not
further investigated as part of this paper.

After the migration of the TIA to the selected subject, the PA
of

s

 is informed that a new task is waiting to be executed. The
PA must now inform the subject, for example by showing a
message on the screen or playing a sound sample. Then, the
subject performs the task using the objects and privileges
which will be provided by the TIA. When the task is done, the
TIA migrates back to the WLA to pass information to the
dynamic database of WLA. This information will contain

s

,

t

,
the objects and privileges used plus other information like time
stamps. Finally, the TIA migrates back to the PIA to pass
control flow related information.

Fig. 3 illustrates the above procedure by means of the travel
expense claim example. The PIA instantiates the task

approve1

in the process instance 157 of Butcher (1). The TIA migrates to
the WLA to get a list of potential subjects who qualify for the
execution of the task (2). The WLA creates the subject list
based on rules and on the dynamic database (cf. Section 5.3).
In this example the list contains only one subject, Carpenter,
because the dynamic database shows that B. Smith has done the
other approve task and Butcher cannot approve his own claim.
Therefore, the TIA migrates to PA of Carpenter and the task is
executed. Next, the TIA migrates back to the WLA to pass
information to the dynamic database. Finally, the TIA migrates
back to the PIA.

Security Aspects

The focus of the paper is to show that SoD and RBAC
mechanisms are feasible for implementation in an agent-based
workflow system. Therefore, this section gives a brief introduc-
tion to RBAC and SoD. Then, a formal model is proposed
facilitating the implementation of access control (by means of
RBAC) and integrity (by means of SoD) in an agent-based
workflow environment.

5.1 RBAC

In a workflow environment, usually tasks are not linked
directly to subjects. The concept of

roles

 forms a middle layer
between the subjects and the tasks, cf. Figure 4. As an example
consider the

Manager

 role in the travel claim example. Further-
more, access rights are enforced on roles and not on subjects.
This simplifies the security administration. There is a consider-
able amount of research about RBAC going on.

1

5.2 SoD

“SoD is a policy to ensure that failures of omission or com-
mission within an organization are caused only by collusion
among individuals and, therefore, are riskier and less likely,
and that chances of collusion are minimized by assigning indi-
viduals of different skills or divergent interests to separate
tasks” [Gligor et al. 98]. In a workflow context, SoD has to be
divided and extended into static SoD (SSoD) and dynamic SoD
(DSoD). SSoD enforces certain rules during build time of the
workflow, i.e. before process instances of the workflow are
instantiated. Example: The process definition in Figure 2
requires that different tasks are performed by different roles
(the

transfer

 task by a secretary and the

approve 1

 task by a
manager). SSoD rules are applied to a process definition to
guarantee their enforcement. In contrast DSoD can only be
enforced during run time of the workflow, i.e. during the exe-
cution of a single instances of a process. DSoD can be enforced
on different layers. Consider the following examples from the
scenario introduced in Section 3:
1. A manager should not be allowed to submit for (first task)

and approve (in a later task) his own travel expense claim. In
this case DSoD should be enforced on the role and subject
layer.

1. http://www.acm.org/sigsac/rbac2000.html

5

PIA 157
of Butcher

1

approve 1 task,
Claim 157 of Butcher

5

2

3

4

TIA

WLA

Manager, Carpenter
Manager, B. Smith
Manager, Butcher

PA B. Smith

PA Carpenter

PA Butcher

Dynamic DB

(157, Butcher, Employee, submit, claim, apply)
(157, B. Smith, Manager, approve 2, claim, approve)

TIA TIA

TIA

Fig. 3: Life cycle of a TIA

Privacy in the Net

4

INFORMATIK • INFORMATIQUE 6/2000

2. The following example is on a subject layer: Two brothers
(A. Smith and B. Smith) are working in the same company.
To prevent fraud, one of the brothers should not be allowed
to approve the travel expense claim of his brother.

3. As a third example considers a document which is used in a
first task by a subject in a certain role. In the travel claim
example there could be the policy that the subject should not
get any privileges to this document for the remaining tasks
in the process instance even in a different role. This could be
necessary to prevent any (ex post) manipulation of the
document. Suppose Snyder submits a travel expense claim
in her employee role. Then, Snyder can not transfer the
money even if her secretary role is activated. This example
illustrates SoD on an object, subject and role layer.

There are more complex SoD policies ([Ahn/Sandhu 99,
Bertino et al. 99]) which fall out of the scope of this paper. The
model which will be introduced in the following subsection al-
lows for defining dynamic policies on role, subject, task, object
and privilege layer. To illustrate the model, the three examples
given above will be used.

5.3 A model for DSoD

Our model uses set theory and functions using the following
five sets:

SUBJ

 The set of all persons who are capable of executing a
task.

ROLE

 The set of all roles in a process definition.
TASK This set includes all tasks that are defined in the proc-

ess definition.

OBJ

 The set of all objects (e.g. a text document) which are
needed to execute the tasks.

PRIV

 The set of privileges. A privilege is used on an object,
for example a read permission on a text document.

In the workflow definition it has to be defined which subjects
are allowed to activate which roles. Therefore, the function

R

maps

SUBJ

 to the power set of

ROLE

.

In a next step, all task definitions have to include the role that
is allowed to execute the task. The following function is
defined:

Finally, a function is needed to associate tasks with objects
and privileges:

Figure 4 shows the relationship between the five sets and the
three functions. Information constrains in the above mentioned
sets must be defined in the process definition. At run time, it is
possible to implement DSoD using these sets together with a
natural number, indicating the process instance.

Consider a tuple consisting of the Cartesian product of the
following six sets where N is the set of all natural numbers and
n indicates the process number:

Not all of these tuples are meaningful. Therefore, the notion
of soundness is introduced. A tuple (

n, r, s, t, o, p

) is

sound

 if
and only if
1. ,
2. , and
3.

hold. The first inclusion says that the subjects

s

 should be
allowed to activate role

r

. Next, the role

r

 should be allowed to
execute task

t

. Finally, the object

o

 and the privilege

p

 should
match with the task

t

. Note that the tasks have to be in a chron-
ological and logical order. We therefore assume that (TASK,

≤

)
is a partially ordered set.

t

1

≤

t

2

 says that

t

1

 is executed in
parallel with or before

t

2

.
The WLA uses a database called

DB

dyn

 for storing all tuples
and rules to enforce DSoD. The rules for our examples above
are:
1. A manager who is not allowed to approve his own claim.

n

is a process instance id,

s

 a subject,

r

 the manager role,

t

1

 is
the submit task,

t

2

 the approve 1 or 2 task,

o

 is the travel
claim and

p

 are the submit privilege.

symbolizes any possible element of the corresponding set.

2. Consider the “brother” example, where

s

1

 is A. Smith and

s

2

is B. Smith,

t

1

 is submit,

t

2

 is approve 1 or 2 task,

o

 is the
travel claim document,

p

1

is the submit and

p

2

 the approve
privilege.

3. Last example:

s

 is Snyder,

r

 is Employee,

t

1

 is submit and

o

is the travel claim.

for all

t

1

<

t

2

It is very important to check the rules for consistency.
Contradicting rules may ruin the whole SoD mechanism. Also
it might be possible to combine several rules to a single rule.

R:SUBJ 2
ROLE→

T:TASK 2
ROLE→

P:TASK 2
OBJ

2
PRIV×→

(n, s, r, t, o, p) N SUBJ× ROLE× TASK× OBJ× PRIV×∈

r R(s)∈
r T(t)∈
(o, p) P(t)∈

(n, s, r t1 o, p), , DBdyn∈ (n, s, r t2 #,#), , DBdyn∉⇒

n s1 # t1 o p1, , , , ,() DBdyn∈ n s2 # t2 o p2, , , , ,() DBdyn∉⇒

n s r t1 o #, , , , ,() DBdyn∈ n s # t2 o #, , , , ,() DBdyn∉⇒

SUBJ

ROLE

TASK

PRIVOBJ

R

T

P

Fig. 4: Sets and mappings in the DSoD model

Privacy in the Net

INFORMATIK • INFORMATIQUE 6/2000 5

This process is called pruning. For more details see [Bertino et
al. 99].

Implementation of DSoD in an Agent-based Workflow
System

Section 4 introduced an architecture for an agent-based
workflow system, Section 5.3 a formal model for DSoD rules.
This section shows how these parts are interrelated. For illus-
tration refer to Figure 3 to see which information from the
DSoD model is used when and by which agent types.

The PIA has control over the whole process execution, i.e.
the partially ordered set of tasks TASK, the roles ROLE, objects
OBJ, and privileges PRIV associated with each task. In step (1)
the PIA instantiates a TIA for task t and passes information
about the task. This information consists of P(t) (the privileges,
objects) and T(t) (the roles) associated with t. Note that only the
privileges and objects are passed which will be needed by the
subject to perform the task implementing the security principle
of least privilege.

The TIA migrates to the WLA and passes T(t) to the WLA.
The list of possible subjects is created by checking the elements
of T(t) and R(s) for all tasks and subjects.

In step (3) the TIA decides randomly which subject performs
the task and gives this information back to the WLA. The WLA
will generate a subject list [s1,..., sn] after enforcing the DSoD
rules based on the entries in the dynamic database DBdyn. This
list consists of all subjects capable of executing the task and
will usually contain more than one subject. The TIA uses a ran-
dom function rand which maps the input n to a random number
in the set {1, …,n}. The subject chosen will be srand(n). This
practice further decreases the possibility of fraudulent activities
since the outcome of the assignment is not predictable.

Now the WLA blocks the subject for this instance. This is
necessary for parallel execution, otherwise the DBdyn checking
could fail. Before the TIA migrates to the subject the WLA
inserts new tuples in the dynamic database. A tuple is (n, r, s, t,
o, p), where n is the process instance number, r the role associ-
ated with task t, s the subject which performs t, and p the priv-
ilege used on object o. Several tuples can be inserted into DBdyn
for t, e.g. if several objects are used in the task. When the TIA
arrives at the subject, the PA of s gets the objects plus privileges
contained in P(t). Depending on the task, one or more objects
may be created which have to be transferred via the TIA to the
PIA. (4) takes the TIA back to the WLA where the subject is
unblocked.

As a final step (5) the TIA moves back to the PIA where the
objects are passed over. Finally, the TIA is deleted by the PIA.
If a complete process instance has finished (in the example,
after the transfer task), the PIA can initiate a garbage collection
at the WLA which removes all tuples from this process instance
from DBdyn. This information together with the objects created
during the execution can be stored in an archive. Finally, the
PIA is deleted, too.

Conclusion
This paper introduced an agent-based workflow environ-

ment consisting of four different agent types. The following

table shows the four agent types and their most important
characteristics.

The mobility of a TIA is rated high (+), since a TIA has to do
several migrations during its life. The TIA will be an “intelli-
gent” agent because several decisions such as the choosing of a
subject from the subject list has to be done. The TIA further-
more enforces the strict least privilege principle (Security +). A
TIA has to be created for every task in a process instance
(marked ++ in the Instance column). The other agents are inter-
preted similarly.

This workflow environment was used to enforce different
security features:
1. (Dynamic) access control: The access to objects is restrict-

ed. This is done dynamically because TIAs are created based
on the state of the process instances.

2. Strict least privilege: A subject will just receive privileges to
objects which are needed for the execution of a task.

3. SoD: The major focus of the proposed architecture is SoD.
Its dynamic variant DSoD is realized through the interaction
of PIA and WLA.

4. Random choice of subjects: This practice further decreases
the possibility of fraudulent actions.

The work suggests that agents are a valuable resource in
implementing security features in workflow environments.

Future work will deal with the development of a prototype to
validate the presented architecture. Furthermore, the SoD
model will be extended, e.g. to enforce rules between different
workflow instances, e.g. when confidential data could be
collected in different workflow instances by the same subject.

References
[Ahn/Sandhu 99]

Gail-Joon Ahn and Ravi Sandhu. The RSL99 Language for Role-
Based Separation of Duty Constraints. In Proceedings of 99 ACM
Conference on Role Based Access Control, 1999.

[Bertino et al. 99]
Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. The Spec-
ification and Enforcement of Authorization Constraints in Work-
flow Management Systems. ACM Transactions on Information
and System Security, 2(1):65–104, February 1999.

[Crystaliz et al. 97]
Crystaliz, Inc., General Magic, Inc., GMD Focus, and IBM
Coorp. Mobile Agent Facility Specification. Technical report,
OMG, 1997.

[Clark/Wilson 87]
David D. Clard and David R. Wilson. A Comparison of Commer-
cial and Military Computer Security Policies. IEEE Symposium
on Security and Privacy, pages 184–194, 1987.

[Ferber 99]
Jacques Ferber. Multi-Agent Systems: An Introduction to Artifi-
cial Intelligence. Addison Wesley Publishing Company, 1999.

[Gligor et al. 98]
Virgil D. Gligor, Serban I. Gavilla, and David Ferraiolo. On the

6

7

Mobility Intelligence Security Instance

PIA - + + +

TIA + + + ++

WLA - - - -

PA - - - -

Privacy in the Net

6 INFORMATIK • INFORMATIQUE 6/2000

formal definition of separation-of-duty policies and their compo-
sition. IEEE Computer Society, IX:172–183, 1998.

[Georgakopoulos et al. 95]
Dimitrios Georgakopoulos, Mark Hornick, and Amith Sheth. An
Overview of Workflow Management: From Process Modelling to
Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

[Hawryszkiewycz/Debenham 98]
Igor Hawryszkiewycz and John Debenham. A Workflow System
Based on Agents. In Gerald Quirchmayr, Erich Schweighofer,
and Tervor J. M. Bench-Capon, editors, Database and expert
systems applications, volume 17, page 688ff. Springer, 1998.

[Huhns/Singh 98]
Michael N. Huhns and Munindar P. Singh. Workflow Agents.
IEEE Internet Computing, July/August 1998.

[Leymann/Altenhuber 94]
F. Leymann and W. Altenhuber. Managing Business Processes as
an Information Resource. IBM Systems Journal, 33(2):326–348,
1994.

[Lange/Oshima 99]
Danny B. Lange and Mitsuru Oshima. Seven Good Reasons for
Mobile Agents. Communications of the ACM, 42(3):88, March
1999.

[Scheer 94]
August-Wilhelm Scheer. Business Process Engineering. Refer-
ence Models for Industrial Enterprises. Springer Verlag, Berlin,
1994.

