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Enhanced Risk Assessment in
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ALTHOUGH HEALTH CARE HAS
long been lagging behind other industries in
adopting computer technologies, the health
care industry is now using information tech-
nology in almost every health care sector
across the globe. This has resulted in major
transformations of the entire industry, aimed
at maximizing the quality of medical care
while minimizing costs.1 However, storing
health care information electronically does
raise concerns about the risk of exposing
highly confidential and sensitive health care
information to outsiders. The health care
domain must properly assess the possible risks
of computerization and make recommenda-
tions for, at best, preventing such risks and, at
worst, minimizing them. Because health care
information systems are unique, they require
a different approach to risk assessment.

Assessing risks

One salient feature that sets health care
institutions apart from ordinary institutions
is that they are principally aimed at treating
people. To incur a risk here (such as unau-
thorized access to patient information) could

compromise not only the patient’s privacy
but also his or her well-being. Putting patient
records online increases the risk that out-
siders will exploit sensitive patient data. In
the health care environment, other risks, such
as the unavailability of patient information
owing to a power failure, could have fatal
consequences. Also, it is often difficult, if not
impossible, to isolate the health care system’s
assets from the traffic flow of patients, visi-
tors, and doctors, which creates an urgent
need to protect patients’ privacy.

Just as important is the need to share accu-
rate patient information and ensure its avail-
ability to all authorized parties to allow

proper treatment of the patient. The dilemma
of obtaining, using, and sharing patient infor-
mation to provide care while not breaching
patient privacy is a serious concern.

It is also difficult to quantify nonmonetary
risks in a health care environment. For exam-
ple, it is difficult to determine the cost asso-
ciated with the incorrect treatment of a
patient resulting from inaccurate informa-
tion. Furthermore, some patient information,
such as clinical information, might be confi-
dential, whereas another part, such as geo-
graphical information, might be unclassified.
The latter, therefore, introduces a certain
degree of vagueness regarding the patient
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information and the possible risks that a typ-
ical health care institution might incur.

We researched several alternative model-
ing techniques, such as the probabilistic the-
ory, PERT (Program Evaluation and Review
Technique) analysis, heuristic modeling, and
fuzzy logic. We concluded that fuzzy-logic
techniques present a plausible way of mod-
eling such vagueness, and we can relate
everything back to a certain degree of likeli-
hood—for example, the chance that patient
information will be exposed to outsiders
might fall under the “high likelihood” fuzzy
set, at a 68% chance.

In addition to vagueness, we must accom-
modate intuition in modeling risk assessment
in a health care institution, because human
observation forms the basis of any risk assess-
ment. For example, we cannot precisely deter-
mine the likelihood of exposing database files
with patient information to outsiders, but we
can estimate a value based on observations.
Fuzzy logic ensures that we do not neglect
human common sense and intuition.

This fuzzy-logic approach lets us calculate
IT risk values for different areas in an health
care institution. For example, a hospital super-
intendent can use these IT risk values to iden-
tify areas in a specific division that are critical
to information security and then enhance the
hospital’s IT security. Successfully executing
this approach, however, requires knowledge-
engineering and business-analysis skills. The
knowledge engineer needs to acquire the nec-
essary information to, for example, determine
whether distributing patient information
impacts the patient’s privacy while he or she
is in the operation ward. Business analysts, on
the other hand, should be well educated in the
health care profession. They must be able to
point out the different sections in a hospital and
explain the sharing of patient information dur-
ing the patient’s stay. Medical doctors and pro-
fessional nurses should be able to assist the
business analyst. The knowledge engineer,
business analyst, hospital superintendent, med-
ical staff representatives, and administrative
staff representatives can all be involved in the
knowledge-acquisition process in a typical
hospital.

Dynamic health care
institutions

When patients visit a typical health care
institution, they can follow various routes,
depending on the purpose of their visit. Figure

1 depicts a typical example of a patient’s route.
Each patient route consists of a finite num-

ber of phases. A phase is a division within a
specified patient route. The example in Fig-
ure 1 consists of six phases: registration,
preparation ward, operation theater, ward
after operation, release, and follow-up visits.
To elucidate the assessment of risks through
a cognitive fuzzy-logic approach, we use the
patient route in Figure 1 as an example
throughout this article.

A typical patient spends a certain amount of
time in each phase of the route. During each
phase, the patient information is essentially
shared by authorized communicating parties,

such as the doctor, specialist, and laboratory.
However, it is also possible that unauthorized
parties might need to access the patient infor-
mation, such as in an emergency situation. If a
patient were, for example, admitted to a hos-
pital’s emergency room, the on-duty doctor
(who is not necessarily a resident at the hospi-
tal the patient normally visits) would need to
access the patient information at once to effec-
tively treat the patient. The inaccessibility of
patient information in such case might have
serious consequences. The flow of health care
data is, therefore, complex and not limited to
the point of care. For this reason, the patient
information would also be exposed to many
outsiders, thus increasing the possibility of
compromising confidentiality, integrity, or
availability of the sensitive patient informa-
tion. In the patient route in Figure 1, we can
use different technologies in each phase of a
patient’s stay, including database and paper
files in registration and the preparation ward;
microfilm, database files, a LAN server, and
paper files in the post-operation ward; and
microfilm for the release phase.

Because these technologies are extremely
vulnerable to risks, the institution’s staff must
consider them when putting in security con-
trols. The security controls will also differ

from phase to phase, depending on the pos-
sible risks. It might, for example, be easier
to gain unauthorized access to paper files
than to database files. Therefore, we must be
able to revise and enhance security controls
continuously for this dynamic environment.

To obtain a clear picture of the relation-
ships between the various aspects in a typi-
cal health care institution (such as patient
route consisting of phases, time spent in each
phase, authorized and unauthorized commu-
nicating parties sharing patient information,
technologies for storing and processing
patient information, and security controls),
we can use a fuzzy cognitive map. FCMs are
fuzzy-graph structures that provide an
expressive and flexible method of intuitively
capturing and representing complex rela-
tionships.2 In the event of an intuitive activ-
ity such as a risk assessment, the FCM natu-
rally represents the human way of thinking.3

Drawing a FCM requires both a knowledge
engineer and a business analyst’s expertise.
They aim to provide a clear representation of
the underlying physical, real-world domain
with concept nodes representing events that
they link to one another. However, the knowl-
edge engineering effort is complex. In the
health care domain, the knowledge engineer
should be skilled in the interview techniques
necessary to acquire raw knowledge from the
health care personnel. Furthermore, the knowl-
edge engineer and business analyst need to
work closely together to determine how the
various dynamic aspects in a specific health
care institution influence one another. Finally,
they must cast this raw knowledge in an appro-
priate form that we can use to draw the FCM.

Figure 2 depicts an FCM for a patient’s reg-
istration phase. The FCM consists of nodes (or
concepts) that represent events (for example,
the patient spends some time in registration)
and edges, which describe relationships (or
causal flow) between these events.2,4,5 These
relationships indicate whether one event
increases or decreases the likelihood of another
event. The edges have “fuzzy” strengths in the
interval range [–1,1], indicating the degree to
which one event affects another. The plus rela-
tionship in Figure 2 between C1 (communi-
cating parties sharing patient information) and
C6 (the risk of exploited patient information)
implies, for example, that if the number of
communicating parties sharing patient infor-
mation in the registration phase increases, then
the risk of patient information being exploited
in this phase will also increase by a degree of
0.8, or 80%. By the same token, if the number
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of communicating parties decreases, then the
risk of patient information being exploited will
also decrease by 80%. The other plus rela-
tionships work in the same way.

On the other hand, the minus relationships
indicate that the possibility of one event occur-
ring increases while the possibility of another
event occurring decreases, and vice versa. In
this way, the minus relationship between C5

(security controls) and C6 (the risk of exploited
patient information) implies that if the strength
of security controls in the registration phase
increases, then the risk of exploited patient
information in this phase will decrease by
90%. The reverse is also true. The other minus
relationships work in the same way.

We associated an activation threshold for
each event that specifies the minimum
strength to which the incoming relationship
degrees must be aggregated to activate an
event. For C4 (the exploitation of paper files)
to occur, the incoming relationships must be
aggregated to a minimum of 0.8, or 80%. If
the patient spends time in registration (event
C2) and the doctors and nurses in charge
shared the patient information (event C1), then
the incoming relationships (e1,e4) and (e2,e4)
need to aggregate to at least 0.8 for the paper
files to be exploited (C4). The thresholds of
the other events work in the same way.

Even though the FCM can express these
dynamic relationships, it is not possible to
create a general FCM that will apply to dif-
ferent health care institutions. There are
numerous dynamic aspects that vary from
one health care institution to another (as well
as from one phase to another in a specific
patient route of a specific health care institu-
tion)—for example, the technologies the
institution uses to store and process patient
information. We might be able to identify a
few general dynamic aspects that are rele-
vant to any health care institution, but we
must treat each institution individually.

Calculating a phase’s IT risk
value

Most events in a typical health care insti-
tution are not easily quantifiable, because they
merely constitute vague estimates. A fuzzy-
rule-based approach, however, provides a
way to model the intuitive fuzzy relationships
in more detail (see the FCM in Figure 2).
Such an approach constitutes a set of fuzzy
rules that converts inputs to output.6 All the
fuzzy rules are fired—that is, are activated—

in parallel to some degree.7 Some of the rules,
however, fire to zero degrees, with the result
that they will not contribute to the final out-
come of the fuzzy-rule-based system.

We can view the FCM edges that we used
to represent the fuzzy relationships between
events as fuzzy if–then rules. For example,
if the strength of security controls in the reg-
istration phase increases, then the likelihood
of database files containing patient informa-
tion decrease by a certain degree. Human
observation and intuition (which are natu-
rally vague) form the basis for constructing
such fuzzy rules.

To illustrate the fuzzy-rule-based approach,
we will only consider the registration phase
in Figure 1. The principal aim of this approach

is to calculate an IT risk value linked to a phase
in a specific patient route. This risk value is
based on the IT domain a typical patient will
be exposed to in a specific phase of his or her
route.

After calculated IT risk values for each
phase in a patient route, the hospital superin-
tendent can use these IT risk values, for exam-
ple, to identify those phases in a specific patient
route that are critical to information security
and then further investigate countermeasures
to enhance the hospital’s IT security.

As we mentioned earlier, the inputs and
the output constitute vague estimates rather
than crisp values; such vague estimates
define general categories, as opposed to rigid,
fixed collections. These categories have more
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Figure 2. A fuzzy cognitive map, representing the dynamic relationships in a hospital in the registration phase.
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Figure 1. Route followed by a patient admitted to a hospital for an operation.



flexible membership requirements that allow
for partial membership to a category. The
degree to which a value is a member of a cat-
egory can be any value between 0 and 1
(rather than strictly 0 or 1). An estimated
value of 11 communicating parties sharing
patient information in the registration phase
can, for instance, have a membership of 0.8
in the “small number of communicating par-
ties” category. In fuzzy logic, we call such
categories fuzzy sets.

Each fuzzy set has a corresponding mem-
bership function that returns the degree of
membership for a given value within a fuzzy
set.7 Figure 3 show how we can represent the
inputs and output by means of membership
functions. Membership functions might take
on any form, but the most common shape is
a triangle. In Figure 3, we can view the tri-
angular sets as the bisection of a triangular
fuzzy set, because they overlap the endpoints
of the universe of discourse (or the total
allowable values from the smallest to the
largest). We use the bell-shaped membership

functions in Figure 3 to represent values
around a central value.

To convert a series of individual fuzzy
regions into a continuous and smooth surface,
each fuzzy set a membership function repre-
sents must, to some degree, overlap its neigh-
bouring set. This overlap is the natural conse-
quence of fuzziness and ambiguity associated
with the segmentation and classification of a
continuous space. Experience dictates that the
overlap for midpoint-to-edge for neighboring
fuzzy regions averages between 25% and 50%
of the fuzzy set base. However, drawing mem-
bership functions is a matter of common sense
and engineering judgment.

Consider Figure 3b: A 420 value for the
risk of exploited patient information belongs
to the very low fuzzy set to a degree of 0.1,
to the low fuzzy set to a degree of 0.35, and
to the medium fuzzy set to a degree of 0.82.
Therefore, a particular value can belong to
more than one fuzzy set at any given time,
but the transition from one fuzzy set to the
next is gradual.

To determine the influence of the inputs
on the risk of exploited patient information
(output), we can formulate intuitive linguis-
tic fuzzy rules. We can reason that if the
period spent in registration is medium, the
security controls in registration are strong,
and the number of parties sharing patient
information is small or very small, then the
risk of exploited patient information is low.

Constructing such fuzzy rules involves
intensive knowledge engineering and an
understanding of the specific health care
institution domain. The aim is to find the best
set of rules that reflect the overall behavior
of the specific health care domain. This
might also involve experimentation with var-
ious fuzzy rule sets to determine the rule set
that produces the most stable result.

The following fuzzy rules are examples
that we can apply to determine the risk value
of the registration phase:
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Figure 3. Membership functions for (a) the inputs and (b) the output.
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and the time spent in the registration phase
is average,

THEN the risk is low.
IF the number of communicating parties is

small
and the time spent in the registration phase
is average
and the strength of the security controls in
place is weak,

THEN the risk is medium.

Consider Figure 4: Supposing that we esti-
mate the number of people sharing the
patient information in this phase at 10, then
this constitutes a 0.6 membership in the “very
small number of communicating parties”
fuzzy set and a 0.85 membership in the
“small” fuzzy set. Similarly, if we estimate
the time the patient spent in the registration
phase at 25 minutes and the security controls’
strength at 8%, then this constitutes mem-

berships of 0.9 in the “average time spent”
fuzzy set and 0.75 in the “weak strength of
controls” fuzzy set, respectively.

It might be difficult to distinguish between
an estimated strength of 8% and an estimated
strength of 12% for a specific security con-
trol. In such cases, we should focus on the
fuzzy sets as such—for example, we should
consider whether the strength of the security
control is weak rather than average (so 8% is
preferable) or average rather than weak (so
12% is preferable). We do not rigidly specify
the exact domain over which we map a spe-
cific fuzzy set and the specific shape of the
fuzzy set’s curve. The initial determination
of a fuzzy set’s domain and curve shape is
normally done intuitively. Fuzzy systems tol-
erate approximations in the representations
of fuzzy sets,7,8 which means we can possi-
bly use more than one type of fuzzy set to
model a specific scenario successfully. After

the initial intuitive determination of the curve
shapes, we use repeated trial and error sys-
tem runs to find the optimum configuration
for solving a particular problem. According
to the scenario in Figure 4, both fuzzy rules
we listed earlier will fire to some degree. We
must map the input fuzzy sets “very small
number of communicating parties” and
“average time spent” the first fuzzy rule
implied and the input fuzzy sets “small num-
ber of communicating parties,” “average time
spent” and “weak strength of security con-
trols” the second fuzzy rule implied, to the
“low” and “medium risk of patient informa-
tion being exploited” output fuzzy sets,
respectively. Figure 5 depicts this process,
called “correlation.”

Consider the first fuzzy rule—IF the num-
ber of communicating parties is very small
and the time spent in the registration phase
is average, THEN the risk is low. To corre-
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late the “very small” and the “average” fuzzy
sets with the “low” fuzzy set, we use the cor-
relation minimum method, which truncates
the “low risk” fuzzy set at the minimum-
truth value of the input fuzzy sets “very
small number of communicating parties”
and “average time spent.” The “very small”
fuzzy set’s 0.6 membership value is lower
than the “average” fuzzy set’s 0.9 member-
ship value, so the “low risk” fuzzy set is trun-
cated at 0.6.

The correlation process for the second
fuzzy rule—IF the number of communicat-
ing parties is small and the time spent in the
registration phase is average and the strength
of the security controls in place is weak,
THEN the risk is medium—works in the
same way. The “weak” fuzzy set’s 0.75 mem-
bership value is lower than the “small” fuzzy
set’s 0.85 membership value and the “aver-
age” fuzzy set’s 0.9 membership value (see
Figure 4). The “medium risk” fuzzy set is,
therefore, truncated at 0.75.

We must aggregate the output fuzzy
regions that the two fuzzy rules generate to
obtain a combined output fuzzy region. Fig-
ure 6 illustrates the aggregation process. The
aggregation method we used, namely, the
min/max aggregation method, takes the max-
imum of the output fuzzy regions generated
at each point along their mutual membership
values to produce a final fuzzy region.

The final step in the rule-based approach
involves the defuzzification of the output
region in a bid to obtain the expected risk
value of the registration phase in the patient
route under consideration. Figure 6 also illus-
trates this process.

There are several techniques available
for defuzzification. For the purposes of our
model, we use the center of maximum tech-
nique to determine the expected risk value.

This technique finds the domain point in
the aggregated output region with the max-
imum truth. The registration phase’s risk
value is, therefore, 450, which is just below
an average risk value on a scale from 0 to
1,000.

Using cognitive fuzzy tools to
support decision-making

The fuzzy rule-based approach provided
an expected IT risk value linked to the regis-
tration phase in the route a typical patient will
follow when admitted to hospital for an oper-
ation. We can use the FCM introduced earlier
to assist management in making decisions
based on the outcome of such risk value.

Supposing that the IT risk value for the
registration phase is 450, the risk value is
lower than average but still not very low. We
can use the FCM to explore various what-if
scenarios to determine a way to either
decrease the risk value or explore whether a
scenario could increase the risk value in such
a way that the registration phase becomes a
high-risk area. What would happen if paper
files containing patient information were
exploited? We use the FCM to effectively
answer such questions.

Consider the relationships between the
events in the registration phase the FCM
describes in Figure 2. The simple 2D edge
matrix in Figure 7 represent these relation-
ships.

The ith row lists the connection strength of
the edges (ei,ek) (which describe relation-
ships) directed out from causal event Ci. The
first row in the matrix indicates that the
strength of the relationship (e1,e3) between C1

and C3 is 0.6, the strength of (e1,e4) between
C1 and C4 is 0.6 and that the strength of (e1,e6)

between C1 and C6 is 0.8 (see Figure 2).
Furthermore, Ci causally increases Ck if

(ei,ek) > 0, decreases Ck if (ei,ek) < 0, and has
no effect if (ei,ek) = 0. Event C1, for example,
causally increases events C3, C4, and C6 to
varying degrees, because (e1,e3), (e1,e4) and
(e1,e6) are all greater than 0.

Each event in an FCM turns one or more
events on (1) or off (0). For example, to
model the what-if scenario—namely, what
would happen if, for instance, the paper files
were exploited in the registration phase—
event C4 needs to be turned on (that is, to be
set equal to one). All other events remain
zero.

The state vector [0 0 0 1 0 0] can represent
this input state. In other words, either a zero
or a one in the state vector represents each
event in the FCM, depending on whether the
vector is turned off or on. Therefore, in our
what-if scenario, only the fourth element (C4)
in the state vector has a value of one. FCM
input states such as these fire all relationships
in the FCM to some degree. This process will
show how, in a fuzzy dynamic system, causal
events affect each other as time goes by.

To model the effect of the input state I0 =
[0 0 0 1 0 0] (the exploitation of paper files
containing patient information) on the FCM
for the registration phase, we use the fol-
lowing technique to determine the new state
(on or off) for each event Ci each time (tn+1)
fires the FCM:

This technique involves a matrix–vector
multiplication to transform the weighted
input to each event Ci. S(x) is a bounded sig-
nal function indicating whether Ci is turned
off (0) or on (1).

c t = S e t C ti n+1 ki n k n
K=1

N

( ) ( ) ( )
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We apply the above formula to the FCM
with initial input state [0 0 0 1 0 0] as follows

I0 = [0 0 0 1 0 0], then

I0k refers to the kth element in the state vector
I0 = [0 0 0 1 0 0]

ek1 refers to the entry in the kth row in the first
column of the edge matrix E

ek2 refers to the entry in the kth row in the sec-
ond column of the edge matrix,

E, and so forth.

= [0*0 + 0*0 + 0*0 + 1*0 + 0*0 + 0*0,
0*0 + 0*0 + 0*0 + 1*0 + 0*0 + 0*0,
0*0.6 + 0*0.7 + 0*0 + 1*0 + 0*-0.7 + 0*0
0*0.6 + 0*0.7 + 0*0 + 1*0 + 0*-0.7 + 0*0
0*0 + 0*0 + 0*0 + 1*0 + 0*0 + 0*0
0*0.8 + 0*0.9 + 0*0.6 + 1*0.6 + 0*-
0.9 + 0*0]

= [0 0 0 0 0 0.6]

0.5

→ I1 = [0 0 0 1 0 1]

The arrow represents a threshold opera-
tion, with 0.5 assumed as the threshold value.
In other words, all entries in the state vector
I0Ec with values higher than or equal to 0.5
is turned on. Furthermore, we keep C4 on,
because we want to model the effect of a sus-
tained threat of paper files containing patient
information being exploited in the registra-
tion phase. Therefore, we can make the fol-
lowing conclusion: When I0 fires the FCM
(or when I0 occurs), then event C6 is turned
on. The next input state firing the FCM will
be I1 = [0 0 0 1 0 1].

We can apply the formula to the FCM with
input state I1 in the same way:

This results in C6 remaining on. The next
input state I2 = [0 0 0 1 0 1] is, therefore,
equal to the previous input state I1. The FCM
then converges to a fixed point I2 that turns
on C6, which means that the exploitation of
paper files in the registration phase will
increase the risk of patient information being
exploited (C6). (A detailed explanation of this
technique falls outside the scope of this arti-
cle: consult Bart Kosko’s book, Fuzzy Engi-
neering, for more information.4) Based on
the outcome of the what-if scenario, the insti-
tution should control the likelihood of paper
files containing patient information being
exploited to prevent the registration phase’s
IT risk value from increasing.

Modeling what-if scenarios with FCMs
can greatly assist decision making about
security control implementation in a spe-
cific phase of a typical patient route. Using
this modeling technique, we can identify
security services (such as confidentiality,
integrity, authentication, authorization, and
nonrepudiation) threatened by those specific
scenarios and ignore the security services
that are not in any danger.

THIS COGNITIVE FUZZY APPROACH
is unique because it uses both the FCM and
the fuzzy-rule-based techniques to calculate
the IT risk value linked to a phase in a spe-
cific patient route. The advantage of using
these techniques together is that it takes into
account intuitive human observation, which
forms the basis of any risk assessment, and
also accounts for the vagueness regarding
patient information and risks when calculat-
ing a phase’s risk level in a typical patient
route. By identifying a phase’s IT risk value,
this approach helps health care staff manage
risks by facilitating the decision-making
process.

We’ve aimed our further research at devel-
oping a complete risk-management model
specifically tailor-made to suit the health care
domain. We will base such a model on the
cognitive fuzzy modeling approach we dis-
cussed here. Another possibility for further
research involves investigating this risk-man-
agement model to adapt it to suit other types
of organizations.
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