
On Lattices in Access Control Models

Sergei Obiedkov, Derrick G. Kourie, and J.H.P. Eloff

Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa

Abstract. Lattices have been extensively used for implementing manda-
tory access control policies. Typically, only a small sublattice of the sub-
set lattice of a certain alphabet is used in applications. We argue that
attribute exploration from formal concept analysis is an appropriate tool
for generating this sublattice in a semiautomatic fashion. We discuss how
two access control models addressing different (in a sense, opposite) re-
quirements can be incorporated within one model. In this regard, we
propose two operations that combine contexts of the form (G, M, I) and
(N, G, J). The resulting concept lattices provide most of the required
structure.

1 Introduction

Multiuser computer systems must ensure that information they contain is ac-
cessible only to those who are authorized to use it. Therefore, choosing and
implementing an access control model suitable for a particular computer system
is an important part of its development.

Some of the most well-know access control models make heavy use of lat-
tices [1]. They are based on Denning’s Axioms formulating assumptions under
which an information flow policy can be regarded as a lattice [2]. Due to relative
complexity of their creation and maintenance, these models have enjoyed only
limited use in practice.

In the access control setting, one speaks about active subjects (such as users
or processes) accessing passive objects (such as files or resources). This separation
is not absolute: an object such as a program can become a subject when trying
to access another object such as a file.

In lattice-based control models, security labels are assigned to entities (sub-
jects and objects). These security labels are partially ordered and, in fact, form
a lattice. There are good reasons for it to be a lattice rather than just a partial
order: the supremum and infimum operations play a role in, for instance, some
versions of the Biba model [3, 4]. Information is allowed to flow only in one di-
rection, e.g., from entities with security labels that are lower in the lattice to
entities with security labels that are higher. Section 2 describes the lattice-related
aspects of the Bell-LaPadula model [5].

A security label is usually a combination of a security level (secret, confiden-
tial, etc.) and a subset of categories (project names, academic departments, etc.).
In practice, only a small fraction of all possible labels is used. In Section 3, we
argue that attribute exploration from formal concept analysis (FCA) can help

effectively identify such useful labels. We describe attribute exploration rather
informally (since formal definition is available elsewhere [8]) and, perhaps, more
than necessary for the general ICCS audience, but this is to give security ex-
perts without FCA background an idea of how they can benefit from using this
technique.

A lattice-based access control model typically addresses some particular se-
curity concerns, such as confidentiality (the Bell-LaPadula model [5]) or integrity
(the Biba model [3]). In terms of formal concept analysis, the two models can be
expressed by two formal contexts such that the object set of one context is the
attribute set of the other: (G,M, I) and (N,G, J). Some researchers combine
the lattices of the two models into one lattice [6] to obtain a unified information
flow policy. In Section 4, we discuss the resulting structure, which arises from
a combination of the contexts mentioned above. Then, we outline an attribute
exploration procedure to get the necessary components of this structure.

2 Lattices in Access Control Models

Definition 1. Let H denote a totally ordered set of classifications or security
levels (we use standard notation for this order: e.g., < and ≤) and let C denote a
set of categories such as names of departments within a company, project names,
etc. Then, a compartment is defined as a subset of categories, and a security
label is a pair (h,D) consisting of a security level h ∈ H and a compartment
D ⊆ C.

Security labels are partially ordered: (h,D) ≤ (g, E) if and only if h ≤ g and
D ⊆ E. It is easy to see that this partial order is a lattice: it is the product of
two lattices, (H,≤) and (P(C),⊆). Such lattices are common in military security
models. Sometimes, only a subset of the product is used in practice.

Example 1. Suppose that there are three security levels: unclassified, secret, top
secret. Let C = {a, b, c} contain the names of three different projects in the
system. Figure 1 presents a security lattice built from H and C. Subjects with
the label (secret, {a}) can access objects with the same label and objects labeled
(unclassified, Ø), but cannot access objects labeled, e.g., (top secret, {a, b}) or
(secret, {b}).

It should be noted that by accessing we mean essentially reading (rather
than writing or modifying). Thus, an access control model, such as the one from
Example 1, addresses the confidentiality requirement [4]:

Confidentiality: prevention of unauthorized disclosure of information.

One of the most popular models dealing with confidentiality issues is the Bell-
LaPadula model [5]. There exist many variants of this model; we concentrate only
on its lattice-related aspects and follow the presentation in [1].

Assuming that λ(e) is the security label of the subject or object e, the simple-
security property is formulated as follows:

(top secret, {a, b, c})

(top secret, {a, b}) (top secret, {c})

(secret, {a}) (secret, {b}) (secret, {c})

(unclassified, {c})

(unclassified, Ø)

Fig. 1. An example of a security lattice.

– Subject s can read object o only if λ(o) ≤ λ(s).

With security labels defined as above, a subject can read an object only if
the subject is at the same security level as the object or higher and the subject
has access to all categories associated with the object. However, the simple-
security property is not enough: some restrictions are necessary on how subjects
can write or modify objects. If there are no restrictions, a secret subject can
read a secret document and create an unclassified copy of it, thus providing
unclassified subjects with access to secret information. To avoid this, the ?-
property is introduced:

– Subject s can write object o only if λ(s) ≤ λ(o).

According to these two rules, information can flow only upwards: from less
secure objects to more secure subjects and from less secure subjects to more
secure objects.

The ?-property implies that higher-level subjects cannot send messages to
lower-level subjects. This is not always acceptable. To avoid this problem, sub-
jects are sometimes granted downgrading capabilities: they are allowed to tem-
porarily change their security label to one that is lower in the lattice. For ex-
ample, a secret user may be associated with a secret subject and an unclassified
subject. Then, the user can write an unclassified document by logging in as an
unclassified subject. During this session, the user will not be able to read any
secret documents. It is trusted that the user will not betray the information she

got during a previous session when logged in as a secret subject. In the case of
a subject with downgrading capabilities being a program rather than a human,
previous sessions are not an issue.

From Example 1, it is clear that not all possible combinations of security
levels and categories make sense as security labels. For instance, Smith describes
a lattice from military practice based on four security levels and eight categories,
which potentially gives rise to 1024 labels [7]. However, the actual lattice con-
tains only 21 elements: there are no compartments consisting of more than three
categories (apart from the compartment associated with the top element) and
compartments are used only in combination with two top-most security levels.
Hence, development of an access control model would involve identification of
meaningful combinations of security levels and categories. In the next section, we
argue that attribute exploration from formal concept analysis can help organize
this process in a semiautomatic fashion and, in some sense, ensure the validity
of its results.

3 Building Access Control Models by Attribute
Exploration

First, we recall some basic notions of formal concept analysis (FCA) [8].

Definition 2. A formal context is a triple (G,M, I), where G is a set of ob-
jects, M is a set of attributes, and I ⊆ G×M is the incidence relation providing
information on which objects have which attributes.

Formal contexts are naturally represented by cross tables, where a cross for a
pair (g,m) means that this pair belongs to the relation I.

Definition 3. For A ⊆ G, B ⊆ M , the following derivation operators are
defined:

AI := {m ∈ M | gIm for all g ∈ A}
BI := {g ∈ G | gIm for all m ∈ B}

If the relation I is clear from context, one writes A′ and B′ instead of AI and
BI .

Derivation operators are used to define concepts:

Definition 4. The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A
is called a (formal) concept (of the context K) with extent A and intent B.
A concept (A,B) is more general (less specific, etc.) than a concept (C, D), if
C ⊆ A (equivalently, B ⊆ D).

For g ∈ G and m ∈ M the sets {g}′ and {m}′ are called object intent and
attribute extent, respectively.

The operation (·)′′ is a closure operator [8], i.e., it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆ M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are

closed sets. Since the closed sets form a closure system [9], the set of all formal
concepts of the context K forms a lattice called a concept lattice and usually
denoted by B(K) in FCA literature.

Definition 5. A many-valued context is a quadruple (G,M, W, I), where G and
M are object and attribute sets, respectively; W is a set of attribute values; and
I ⊆ G×M ×W is a ternary relation satisfying the following condition:

(g,m, w) ∈ I and (g, m, v) ∈ I ⇒ w = v.

Thus, every object has at most one value for every attribute. For our purposes,
it is convenient to assume that every object has exactly one value for every
attribute.

To apply FCA methods to many-valued contexts, one first needs to transform
them into one-valued contexts (i.e., contexts in the sense of Definition 2). A stan-
dard transformation technique here is plain conceptual scaling. We replace every
many-valued attribute m with a set of one-valued attributes Mm by building
a one-valued context (Gm,Mm, Im), where Gm is the set of all possible values
of m, i.e., {w | w ∈ W and ∃g ∈ G : (g, m,w) ∈ I)} ⊆ Gm. The relation Im

translates every value of m into a subset of Mm. Then, the many-valued context
(G,M,W, I) is replaced by a one-valued context

(G,
⋃

m∈M

{m} ×Mm, J),

where (g, (m,n)) ∈ J if and only if there is w ∈ W such that (g, m,w) ∈ I and
(w, n) ∈ Im.

Now, we can easily express the Bell-LaPadula model in terms of FCA. The set
H of security levels and the set C of categories (see Definition 1) constitute our
attribute set. In fact, security level is a many-valued attribute, but the scaling
is pretty straightforward: we use the context (H, H,≥) as a scale. In the case of
Example 1, we get the following (ordinal) scale:

unclassified secret top secret
unclassified ×

secret × ×
top secret × × ×

The attribute unclassified is clearly redundant; so, in principle, we do not have
to include the smallest security level as an attribute in the one-valued context.

The elements of G in our context are subjects and objects and the incidence
relation should assign categories and levels to them. Then, security labels corre-
spond to concept intents, and the security label of an entity (subject or object)
is the intent of the least general concept covering the entity (i.e., containing
the entity in its extent). The concept lattice we get is the reverse of the Bell-

LaPadula lattice, since larger intents correspond to less general concepts; the set
of concept intents with usual subset order is precisely the Bell-LaPadula lattice1.

The problem here is that a complete list of subjects and objects is usually
unknown at the moment when the access control model is being developed (and,
if a system is open to new users or new documents, a complete list never becomes
available). To construct the lattice of security labels, the developer of the system
must envision all types of potential subjects and objects and describe them in
terms of security levels and compartments. It would be good to have a way of
verifying that all possible cases have been considered. Besides, it would not make
harm to bring some order to the process of selecting these relevant combinations.
Attribute exploration is a technique that does precisely this.

Definition 6. An expression D → B, where D ⊆ M and B ⊆ M , is called an
(attribute) implication. An implication D → B holds in the context (G,M, I) if
all objects from G that have all attributes from the set D also have all attributes
from the set B, i.e., D′ ⊆ B′.

There is a connection between implication sets and closure operators.

Definition 7. An attribute set F ⊆ M respects an implication D → C if D * F
or C ⊆ F . A set F respects an implication set Σ if it respects all implications
from Σ. If every set that respects an implication set Σ also respects the implica-
tion D → C, then we say that D → C (semantically) follows from Σ.

All sets that respect some implication set form a closure system (and, hence,
there is a closure operator corresponding to every implication set). A minimal
(in terms of size) set of implications from which all other implications of a context
semantically follow was characterized in [10]. It is called the Duquenne-Guigues
basis or stem base in the literature.

Note that, having the Duquenne-Guigues basis of the context, we are able to
construct the lattice of concept intents even without knowing the actual objects
of the context. The join-irreducible2 elements of this lattice correspond to object
intents that have to be in the context. Such necessary object intents form the
representation context of the concept lattice.

The goal of attribute exploration is to find this representation context and
construct its lattice. The attribute exploration process is quite standard [8] and,
perhaps, does not have to be formally explained here. In its simplest version, it
can be outlined as follows. Given some initial (possibly empty) set of objects of a
subject domain, which is known to have considerably more (perhaps, an infinite
number of) such objects, and their intents, attribute exploration aims to build

1 To get the same order in the concept lattice, we can also consider categories as
objects of the context and entities (subjects and objects of the access control model),
as attributes. Then, security labels are concept extents.

2 We are working under the assumption that the order is that of concept generality,
i.e., the reverse of the intent subset order. Therefore, join-irreducible intents are
those that cannot be presented as intersections of other intents.

an implicational theory of the entire domain (summarized by the Duquenne–
Guigues basis) and a representation context. Obviously, an object of the repre-
sentation context must respect all implications from the generated implication
basis and provide a counterexample for every implication that does not follow
from the basis. It means, in particular, that the concept lattice of the domain is
isomorphic to the concept lattice of this relatively small representation context.

The process of attribute exploration is interactive. In the general setting, the
process is as follows: the computer suggests implications one by one; the user
(the expert) accepts them or provides counterexamples. Attribute exploration is
designed to be as efficient as possible, i.e., to suggest as few implications as possi-
ble without any loss in completeness of the result. This is achieved by generating
implications from the Duquenne-Guigues basis in the order consistent with the
subset ordering of implication premises (from smaller to larger premises). Then,
if the user rejects an implication D → B at some step, it does not affect impli-
cations whose premise is not a superset of D: if such implications were in the
basis, they will remain there.

Advanced versions of attribute exploration allow the user to input back-
ground knowledge, e.g, in form of implications the user knows to be true. Note
that background knowledge is not limited to implications [11]. The presence of
background knowledge usually decreases the number of questions the user has
to answer, since if the answer to a certain question follows from the background
knowledge (combined with already accepted implications), this question is not
asked.

Background knowledge is particularly useful in the case of many-valued at-
tributes. Moreover, it is readily available in this case: it can be automatically
generated from scales. Indeed, a scale completely specifies all possible combi-
nations of the corresponding new one-valued attributes. If we want to limit
ourselves to implicational background knowledge, all that is necessary is to gen-
erate the Duquenne-Guigues basis for each scale. A method for generating the
complete propositional axiomatization of the scale (with attributes interpreted
as propositional variables) also exists [12] and is surprisingly similar to a method
for generating the implication basis [13].

In our case, there is only one many-valued attribute: security level. It can
be shown that the Duquenne–Guigues basis provides the axiomatization for the
whole propositional theory of an ordinal scale, which is the type of the scale we
used above for this attribute. If H is the set of security levels and l ∈ H is the
lowest level, the Duquenne–Guigues basis consists of the following implications:

Ø → {l}
and

{l, h} → {k | k ≤ h}
for all h ∈ H such that ∃j ∈ H(l < j < h). Therefore, in our case, we can do
with only background implications. The basis for the context in Example 1 is as
follows:

Ø → {unclassified};

{unclassified, top secret} → {unclassified, secret, top secret}.
By entering these implications as background knowledge we avoid questions on
implications between these attributes. In the case of Example 1, we would start

(unclassified, Ø)

(secret, Ø)

(unclassified, {c})

(secret, {a}) (secret, {b}) (top secret, Ø) (secret, {c})

(top secret, {a, b}) (top secret, {c})

(top secret, {a, b, c})

Fig. 2. The lattice obtained by attribute exploration based on Example 1. The order is
the subset order of intents. Smaller nodes correspond to nodes absent from the lattice
in Figure 1.

with the context (Ø,M, Ø), where M = {top secret, secret, unclassified, a, b, c}
and the two background implications above. The first question asked by the
system would be:

Is it true that all objects must have all attributes?

This is the most strong implication, and there are no counterexamples to it in
our so far empty context. However, the answer is clearly “no”, and we have
to enter an object that lacks some attributes. Suppose that we enter an ob-
ject with the intent {top secret, secret, unclassified, a, b}. Since this will be
the only object of our context, the system assumes that all objects from the
domain are like that and asks if it is true that every entity is labeled as at
least (top secret, a, b), to which we have to enter another counterexample, say,
{top secret, secret, unclassified, c}. Then, we may have to enter object intents

{secret, unclassified, a} and {unclassified, c}. The system is not going to ask
us whether every object is labeled as at least unclassified, as it knows from the
background implications that this is so.

It is obvious that the process always stops at some point. In fact, the number
of questions we are going to answer is equal to the sum of the sizes of the
implication basis and representation context. The latter, however, depends on
what objects we enter as counterexamples.

The resulting lattice may (and in the case of Example 1, will) contain more
elements than it is necessary, that is, there may be some concepts that do not cor-
respond to any realistic security labels (see Figure 2). This is because the concept
lattice is closed under intersection of intents, whereas the security lattice, gener-
ally speaking, does not have to be closed under intersection of security labels. For
instance, the lattice we obtain from attribute exploration on Example 1 will con-
tain an intent {top secret, secret, unclassified} obtained as the intersection of
{top secret, secret, unclassified, a, b} and {top secret, secret, unclassified, c}.
In the lattice of Figure 1, the meet of the labels corresponding to these two
intents is the bottom element. Some additional effort on the side of the system
developer is required if they want to decrease the size of the lattice. On the other
hand, the existence of such extra concepts suggests that the choice of security
levels and categories or their distribution among security labels might not be
optimal. For example, all labels in Figure 1 that do not contain c can easily be
marked as unclassified: this would not affect the information flow policy, but
would simplify the model.

As a matter of fact, we can even argue that the labeling is optimal only if
there is a one-to-one correspondence between security categories and levels, on
the one hand, and join-irreducible3 elements of the lattice, on the other hand, and
the lattice is closed under intersection. In other words, a node should contain a
category or a level if and only if it is the one that corresponds to this category or
level or if it is above such unique corresponding node. In the case of Example 1,
the level secret corresponds to the node (secret, {c}) and, consequently, should
not co-occur with compartments {a}, {b}, and {a, b}. Such approach ensures
that the number of categories and levels is minimal and that the labels are as
small as possible.

4 Combining Confidentiality and Integrity Models

As said above, the Bell-LaPadula model is concerned with confidentiality. An-
other issue that requires attention is integrity :

Integrity: prevention of unauthorized modification of information.

One of the most common models dealing with integrity is the Biba model
[3]. Biba proposed several integrity models, of which the best known is strict

3 Assuming the subset order as in Figure 1.

integrity. This model is dual to the Bell-LaPadula model: again we have a lat-
tice of (integrity) labels, but this time the information is allowed to flow only
downwards—from entities with higher integrity to entities with lower integrity—
this is to prevent corruption of “clean” high-level entities by “dirty” low-level
entities [4]. Assuming that ω(e) is the integrity level of the entity e, the rules of
the model are formulated as follows [1]:

Simple-integrity property: Subject s can read object o only if ω(s) ≤ ω(o)
Integrity ?-property: Subject s can write object o only if ω(o) ≤ ω(s)

Of course, it is generally not very important whether the information flows
only upwards or only downwards. However, it becomes important if we want to
combine the Bell-LaPadula and Biba models in order to address both confiden-
tiality and integrity issues. In the combination of these two models, the rules of
information flow are as follows [1]:

– Subject s can read object o only if λ(o) ≤ λ(s) and ω(s) ≤ ω(o).
– Subject s can write object o only if λ(s) ≤ λ(o) and ω(o) ≤ ω(s).

If the same security labels are used both for Bell-LaPadula and Biba models,
then the information flow policy boils down to allowing subjects to read and
write only objects from their own security level and compartment. The case
when labels are different for the two models is more interesting (and useful).

Let K1 = (G,M, I) and K2 = (N, G, J) be formal contexts. By using G as the
object set of K1 and as the attribute set of K2, we address the difference in the
information flow direction of the two models. We want to combine these contexts
into one structure in a way that preserves both orders of the corresponding
concept lattices. The largest possible combination of the concept lattices is their
product: (B(K1) × B(K2),≤), where (c1, c2) ≤ (d1, d2) if and only if c1 ≤ d1

and c2 ≤ d2 (with respect to the usual “generality” order on concepts). The join
and meet operations of the lattice (B(K1)×B(K2),≤) are obvious:

(c1, d1) ∨ (c2, d2) = (c1 ∨ c2, d1 ∨ d2)

(c1, d1) ∧ (c2, d2) = (c1 ∧ c2, d1 ∧ d2)

Here, joins and meets of concept pairs are taken in their respective lattices.
However, the product is too large for our purposes: it reflects the structure of

each of the component lattices, but it fails to capture the dependencies between
the elements of different lattices. These dependencies are given via the relations
between the set G and corresponding sets (M and N) in the two contexts.

So, we are looking for an adequate subset B♦(K1,K2) of B(K1) × B(K2).
The first observation is that B♦(K1,K2) must contain concept pairs of the form

(({g}II , {g}I), ({g}J , {g}JJ)) (1)

for every g ∈ G. That is, every element of G must get exactly the same descrip-
tion as it is given by the two initial contexts.

Then, we have several options for how to proceed. We can adopt a minimalist
approach and add to B♦(K1,K2) only those concepts from B(K1) × B(K2)
that are required to make our initial set of concepts a lattice. This makes sense
if we know that G is the entire object set of our domain (rather than a set
that gives rise to representation contexts for K1 and K2) and if all we need
is to properly order elements from G. In the case of combining access control
models, this is indeed all we need (ideally, every concept of the lattice should be
a meaningful security label for some subject or object), but, unfortunately, the
set G does not necessarily contain all possible entities, but only those enough to
get a representation context for each of the two models. Therefore, we choose a
different approach.

The (almost) maximalist approach we choose is to take the sublattice of
B(K1) × B(K2) generated by concept pairs from (1), i.e., the smallest subset
of B(K1)×B(K2) containing all object pairs (1) and closed under the join and
meet operations. From now on, B♦(K1,K2) denotes this lattice. This approach
ensures, in particular, that every concept of each component has a counterpart
in the resulting lattice:

1. For every c ∈ B(K1), there is d ∈ B(K2) such that (c, d) ∈ B♦(K1,K2);
2. For every d ∈ B(K2), there is c ∈ B(K1) such that (c, d) ∈ B♦(K1,K2);

This is useful if we believe that every concept of the initial lattices corresponds
to a (complete w.r.t. the given attributes) description of some entity (for the
combination of the Bell-LaPadula and Biba models, to a security label to be
attached to some subject or object)—then, we cannot discard any concept.

We consider two important subsets of B♦(K1,K2):

B4(K1,K2) := {((AII , AI), (BJJ , BJ)) | A ⊆ G,B =
⋃

a∈A

{a}J}

and

B5(K1,K2) := {((BI , BII), (AJ , AJJ)) | A ⊆ G,B =
⋃

a∈A

{a}I}

It can be easily seen that each of the sets B4(K1,K2) and B5(K1,K2) is a
lattice, and (possibly, without the bottom and top elements, respectively) they
are the set of all joins and the set of all meets of subsets of pairs (1), respectively.

We now define two contexts whose concept lattices are isomorphic to the
lattices B4(K1,K2) and B5(K1,K2).

Definition 8. Let K1 = (G,M, I) and K2 = (N, G, J) be formal contexts. Then,

K1 4K2 := (G,G ∪M, I ∪ I4),

where I4 = {(g, h) | g ∈ G,h ∈ G, and {g}J ⊆ {h}J}, and

K1 5K2 := (G ∪N, G, J ∪ J5),

where J5 = {(g, h) | g ∈ G,h ∈ G, and {h}I ⊆ {g}I}.

Proposition 1. The concept lattice B(K1 4 K2) is isomorphic to the lattice
B4(K1,K2) and the concept lattice B(K1 5 K2) is isomorphic to the lattice
B5(K1,K2).

Proof. We define a mapping f4 : B(K1 4 K2) → B4(K1,K2) as follows. For
A,C ⊆ G,

f4((A, AI ∪ C)) = ((AII , AI), (CJ , C)).

To show that this mapping is well-defined we need to prove that, for every
concept (A, B) of B(K1 4 K2), there is C ⊆ G such that B = AI ∪ CJJ .
It is obvious that B ∩ M = AI . One can see that B ∩ G is (·)J -closed, as
B ∩ G = {h | h ∈ G and ∀g ∈ A({g}J ⊆ {h}J)} = (

⋃
g∈A{g}J)J . Note that

((AII , AI), (CJ , C)) ∈ B4(K1,K2), since C = (
⋃

g∈A{g}J)J .
Clearly, f4 is order-preserving. The inverse mapping is as follows:

f−1
4 ((AII , AI), (BJJ , BJ)) = ({a ∈ AII | {a}J ⊆ BJJ}, AI ∪BJ).

Without loss of generality, we may assume that B =
⋃

a∈A{a}J . Then, A ⊆
{a ∈ AII | {a}J ⊆ BJJ}, and it is easy to see that f−1

4 ((AII , AI), (BJJ , BJ)) is
indeed a concept of K1 4K2.

The mapping f5 : B(K1 5K2) → B5(K1,K2) and the inverse mapping are
given below:

f5((AJ ∪ C, A)) = ((C, CI), (AJ , AJJ));

f−1
5 ((BI , BII), (AJ , AJJ)) = (AJ ∪BI , {a ∈ AJJ | {a}I ⊆ BII}).

We omit the rest of the proof. ut
Let us consider implications in these contexts. How should they be inter-

preted? An implication of K1 4 K2 may contain elements of G, as well as ele-
ments of M . An implication A → B holds in K14K2 if and only if, for all g ∈ G,
B ∩M ⊆ gI and gJ ⊆ (B ∩ G)J whenever A ∩M ⊆ gI and gJ ⊆ (A ∩G)J . In
words:

If (in the two initial contexts) an element of G is related to all elements
from A∩M and no elements from N \ (A∩G)J , then it is related to all
elements from B ∩M and no elements from N \ (B ∩G)J .

An (object) implication C → D over G ∪ N in the context K1 5 K2 reads as
follows:

If (in the two initial contexts) an element from G is related to all elements
from C ∩N and no elements from M \ (C ∩G)I , then it is related to all
elements from D ∩N and no elements from M \ (D ∩G)I .

These implications express the relation between the attributes of M and nega-
tions of attributes from N (and vice versa). Note however that the implication
system of, e.g., K1 4 K2 is different from the implication system of (G,M ∪
N, I ∪ (G × N) \ J−1), the context obtained by combining attributes from M

and negations of attributes from N . The difference is due to the fact that, in
the case of K1 4 K2, our additional attributes are only certain conjunctions of
negated attributes from N .

Now, we outline how attribute exploration can be organized in the case when
the set G described by two contexts (G,M, I) and (N, G, J) is not completely
available. We take the problem of combining Bell-LaPadula and Biba model as
an example.

Suppose that the elements of M are confidentiality categories and confiden-
tiality levels (of the Bell-LaPadula model) and the elements of N are integrity
categories and levels (of the Biba model).

We start by constructing K1 = (G, M, I) and K2 = (N, G, J) using standard
attribute exploration and object exploration4, respectively. The user is asked to
verify implications over M and implications over N (but not implications over
M∪N). However, when providing a counterexample to one of these implications,
the user must enter its complete description in terms of both M and N .

Now, we know all confidentiality labels and all integrity labels. What we do
not know is what combinations of confidentiality and integrity labels are possible.
We construct contexts K14K2 and K15K2. At this stage, the concept lattices
of these contexts might not be exactly what we need, but they do contain every
combination of confidentiality and security labels attached to at least one element
from G. To explore other possibilities, we use attribute exploration on K1 4K2

and object exploration on K1 5K2 to build appropriate lattices.
Questions asked during attribute exploration of K14K2 sound more natural

than one could imagine by looking at the previously given formulas. If M =
{a, b, c} and N = {d, e, f}, we may be asked to verify an implication {¬d} →
{b,¬e}, which can be understood as “if a subject may not write to d, it may not
write to e, either, but may read from b instead”.

Having built K14K2 and K15K2, we can construct B♦(K1,K2) by applying
the join and meet operations to f4(B(K1 4K2)) ∪ f5(B(K1 5K2)).

5 Conclusion

We have discussed some lattice-related aspects of access control models. It seems
likely that attribute exploration can be useful in their construction. The process
may take long, but it is worth the effort in serious applications: attribute ex-
ploration explicitly forces the system developer to consider issues that can be
overlooked otherwise. Although a lattice produced by attribute exploration can
contain more elements than it is necessary for a given set of security labels and
categories, it is a better starting point than the lattice of all subsets and it
4 Object exploration is a process dual to attribute exploration: the user is asked to

confirm an implication between objects (also defined dually to the attribute implica-
tion) or enter a new attribute as a counterexample. The only reason we are talking
about object exploration is that the set N is the object set of K2. One can think of
object exploration as attribute exploration in the transposed context (where objects
and attributes change places).

still contains all necessary elements. In fact, the presence of extra elements may
indicate that the choice of security labels and categories is not optimal.

We have also shown how a model addressing confidentiality and a model
addressing integrity can be combined within one lattice and how this lattice can
be obtained with the help of attribute exploration. This is only a step towards
formalizing the combined model and further research is necessary to estimate
the benefits of the proposed approach and to evaluate other possibilities.

References

1. Sandhu, R.: Lattice-based access control models. IEEE Computer 26(11) (1993)
9–19

2. Denning, D.: A lattice model of secure information flow. Comm. ACM 19(5)
(1976) 236–243

3. Biba, K.: Integrity considerations for secure computer systems. Report TR-3153,
Mitre Corporation, Bedford, Mass. (1977)

4. Gollmann, D.: Computer Security. John Wiley & Sons Ltd, Chichester (1999)
5. Bell, D., LaPadula, L.: Secure computer systems: Mathematical foundations and

model. Report M74-244, Mitre Corporation, Bedford, Mass. (1975)
6. Lipner, S.: Nondiscretionary controls for commercial applications. In: Proc. IEEE

Symp. Security and Privacy, Los Alamitos, Calif., IEEE CS Press (1982) 2–10
7. Smith, G.: The Modeling and Representation of Security Semantics for Database

Applications. PhD thesis, George Mason Univ., Fairfax, Va. (1990)
8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Berlin (1999)
9. Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Coll. Publ., Providence, R.I. (1973)

10. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives re-
sultant d’un tableau de données binaires. Math. Sci. Humaines 95 (1986) 5–18

11. Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science 217 (1999) 215–233

12. Ganter, B., Krausse, R.: Pseudo models and propositional horn inference. Technical
Report MATH-AL-15-1999, Technische Universität Dresden, Germany (1999)

13. Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Technische
Hochschule Darmstadt (1984)

