Computers & Security (2004) 23, 559—-570

ELSEVIER

Computers
& Security

www.elsevier.com/locate/cose

= Towards Web Service access control

M. Coetzee, J.H.P. Eloff*

Department of Computer Science, University of Pretoria, Pretoria, South Africa

Received 17 October 2003; revised 18 March 2004; accepted 4 May 2004

KEYWORDS

SOAP;

XML;

Access control;

Web Services;

Assertions;

Authorisation
manager;

Logical rules;

Roles;

Trust

Introduction

Abstract The Internet has revolutionised the capacity to share information and
services across organisations. Web Service technology enables organisations to
exploit software as a service. Services are accessed by method invocations. Method
interfaces are described and published, and may be freely available. Method
requests and responses are conveyed in SOAP, which has the ability to pass
unhindered through firewalls. Applications that process SOAP requests may be
endangered by messages with malicious intent. Protection of methods and resources
exposed by SOAP is thus a critical requirement for Web Services to be acceptable to
organisations. In Web Service environments, access control is required to cross the
borders of security domains, to be implemented between heterogeneous systems.
New approaches are required that would address the movement of unknown users
across borders so that access to resources can be granted. Specifications have been
released to address access control, but are not well established. In this paper, an
analysis of current approaches to Web Service access control is made, which leads to
five requirements to be addressed by future access control solutions. To address
such requirements, a logic-based access control approach is defined for a Web
Service endpoint. The paper does not address the access control logic that is
required when more than one Web Service is used in an integrated business solution.
© 2004 Elsevier Ltd. All rights reserved.

cross-domain organisational cooperation. Web
Services are derived from emerging standards that

The Internet has revolutionised the capacity to describe a service-oriented architecture on the

share information and services across orga-
nisations. Web Service technology (Gottschalk
et al., 2002) has enabled a major step forward in

* Corresponding author.
E-mail addresses: mcoetzee@cs.up.ac.za (M. Coetzee),
eloff@cs.up.ac.za (J.H.P. Eloff).

Internet, enabling electronic exchange to take
place in a distributed network environment.

A Web Service is the name of an object with
methods that can be invoked through an Internet
connection. SOAP (Simple Object Access Protocol)
(Box et al., 2000) is the primary transport mech-
anism used to convey method requests and

0167-4048/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cose.2004.05.006

mailto:mcoetzee@cs.up.ac.za
mailto:eloff@cs.up.ac.za
http://www.elsevier.com/locate/cose

560

M. Coetzee, J.H.P. Eloff

responses. It is based on HTTP (Hyper Text Transfer
Protocol) (Fielding et al., 1997) and XML (Extensi-
ble Markup Language) (Bray et al., 2000). When
used with WSDL (Web Service Definition Language)
(Christensen et al.), and UDDI (Universal Descrip-
tion, Discovery and Integration) (Atkinson et al.,
2003), Web Services are easily found and inte-
grated into the applications of other organisations.

The deployment of Web Services presents new
security problems for IT departments of organisa-
tions. SOAP requires no additional ports or access
mechanisms beyond those used in Web servers,
which are found in almost every organisation. Each
SOAP message can potentially be seen as a possible
security threat, as it presents itself just as normal
Web traffic would. SOAP messages may be treated
by firewalls as simple HTTP requests for Web
pages, resulting in possible unauthorised access
to the internal applications behind the firewall.
Applications that are to process the requests
contained by SOAP messages may be endangered
by false claims or malicious information. Organ-
isations would require predictable and reliable
operation from their applications, and the inter-
action of their applications with those of their
business partners. Reliable access control is there-
fore a fundamental requirement for the accep-
tance of Web Services by organisations.

Current access control solutions for Web Serv-
ices are not ideal, as an integrated configuration
and development effort is required across security
domains, in order to protect methods and resour-
ces that are exposed. A complicating factor is the
independence of partners, as similar access con-
trol capabilities cannot be adopted. As Web Serv-
ices are used in unexpected ways, by any number
of unknown partners, access control solutions are
required to be flexible and loosely coupled.

In a Web Service environment, interaction is
between remotely located parties who may know
little about each other. Access control generally
assumes that identity is established. To overcome
the limitations of identity-based solutions, do-
main-independent access control information is
added to a message, to make it self-contained.
This can enable a Web Service endpoint to make an
informed access control decision. As a Web Service
endpoint is required to integrate such information
into its access control decision-making process,
issues arise such as: whom to accept access control
information from; what the format of such in-
formation must be; how to inform the requestor of
the format; and how to give access to methods
based on presented access control information.
Custom defined solutions can be error-prone, as an
omission or misinterpretation of a communication

from a partner may lead to improper access to
resources.

The focus of this paper is to define an access
control approach for Web Services that addresses
the mentioned issues. The paper is structured as
follows. Next section provides a brief overview of
recent research on access control in distributed
computing environments. Subsequent section
shows how access control is currently imple-
mented for Web Service environments. An analysis
of current approaches leads to five requirements
to be addressed by future access control solutions.
Generally, access control for Web Services can be
addressed on two levels of abstraction. Each
independent Web Service endpoint receives a re-
quest, and makes a decision over access to its
methods and resources. When more than one Web
Service is used in an integrated business trans-
action, a next level of access control logic is
required. As a decision made by a Web Service
endpoint influences the flow of control of a trans-
action, independent partner decisions must be
orchestrated. For the purpose of this paper, the
discussion is narrowed down to address the case of
the access control decision made by an indepen-
dent Web Service endpoint. A logic-based access
control approach for a Web Service endpoint is
presented next. The five requirements that have
been identified in the previous section are ad-
dressed in the approach that is presented. Final
section concludes the paper.

Distributed access control

Access control is a core requirement for any
information system, in order to prevent malicious
attacks. Access should only be allowed to author-
ised users. This is presently ensured by the joint
use of authentication and access control mecha-
nisms, in both centralised and distributed systems.
The development of service-oriented architec-
tures requires cross-domain access control be-
tween heterogeneous systems. Access control
architectures for similar endeavors have been the
focus of recent research, with results that may be
useful for Web Service access control.

In distributed access control architectures, it is
generally found that access control logic is sepa-
rated from application logic (Bacon and Moody,
2002; Beznosov et al., 1999; Damiani et al., 2001;
Lam and Woo, 1993). This simplifies access control
logic and reduces the cost of administration. For
instance, in a distributed object-oriented architec-
ture such as CORBA, a user is first authenticated.

Towards Web Service access control

561

The result of authentication is a set of security-
related data that is stored in a Credentials object.
When the user makes a method invocation, the
request is intercepted by an AccessDecision ob-
ject, which grants or denies permission for the
object invocation. The decision is based on eval-
uation of the Credentials object, which indicates
the user’s permissions. All participants in this
environment are CORBA enabled.

In order to address cross-domain movement of
users, a move to attribute-based access control is
another central theme found in distributed access
control research (Ashley et al., 2000; Bonatti and
Samarati, 2002; Chadwick and Otenko, 2002). The
need of a domain to authenticate users from other
domains, who require access to local resources, is
removed. The ability, rather than the identity, of
the user becomes important. Before attributes can
be accepted across domains, some form of trust
must be established (Bacon and Moody, 2002;
Foster et al.). In Akenti (Johnston et al., 1998),
a trust-management system, a combination of
authenticated X.509 identity certificates, and dis-
tributed digitally signed authorisation policy cer-
tificates are used to make access decisions about
distributed resources. Partner’s policies are col-
lected by an authorisation engine that makes an
access decision. KeyNote (Blaze et al., 1999) is
another trust-management system, where a cre-
dential, signed by a trusted authority, asserts
attributes about a user. X.509 certificates are
deliberately not required, removing the need for
maintaining a PKI. For such systems, access control
rules are expressed in terms of sets of attributes.
Both unsigned declarations or credentials digitally
signed by a trusted authority may be used for such
purposes (Bonatti and Samarati, 2002). They are
collectively known as assertions, or statements of
fact. An XML standard specification for security
assertions named Security Assertion Markup Lan-
guage (SAML) (Hallam-Baker et al., 2003) has
recently been defined. SAML defines both XML
protocols and assertion structures.

A recent access control approach that can be
used for Web Services is presented in the OASIS
XACML specification (Anderson et al., 2003). It is
based on an extension of XML and supports user
credentials and context-based privilege assign-
ment. It does not directly support role-based
access control, and thus lacks features such as se-
paration of duty constraints and role hierarchies. A
major shortcoming of the XACML architecture is
that all access control policies that are referenced
must be expressed in XML, with XACML syntax. An
architecture is defined that separates a policy
decision point (PDP) from policy enforcement

points (PEPs). The specification does not address
the design of the policy decision point.

Before an access control approach is defined
that may incorporate some of these re-occurring
themes, an analysis of current platform-dependent
access control solutions for Web Services will be
made in the next section.

Existing access control for Web Services

The service-oriented computing paradigm is based
on the interactions between Web Service pro-
viders, Web Service brokers and Web Service
requestors (Coyle, 2002). Web Service providers
define simple business-to-business interfaces, in
order to allow exchange of SOAP messages with
Web Service requestors. Interfaces can be made
available through central Web Service brokers.

There is currently no standard, agreed-upon
method for exposing Web Service methods over
the Internet in such a way that only authorised
users can call them. A typical Web Service access
control scenario is illustrated in Fig. 1. The remote
user is a member of a security domain that allows
its users to access Web Services, exposed by other
domains. The application that performs the access
is referred to as a requestor. The requestor
authenticates the user before access to its resour-
ces is allowed. The user selects an option dis-
played on a page on his browser, for the execution
of a method of a Web Service, defined in another
security domain. On behalf of the user, the re-
questor invokes the selected method. The invoca-
tion is sent in a SOAP message to the Web Service
provider. To be able to make access control
decisions, the Web Service provider may require
information about the user.

The Web Service provider resides on a Web or
Application server that is network accessible.
Platform-dependent access control mechanisms
exist that can be used to protect resources.
Identity-based access control can be implemented
for SOAP requests by using the existing infrastruc-
ture of the underlying HTTP protocol. A Web
Service provider can use basic authentication over
HTTPS, where the requestor adds a username and
password to the request. Access to methods is
granted to authorised users belonging to groups or
roles with defined permissions. In addition, the
requestor making the request on behalf of the
remote user is authenticated by verification of its
digital certificate. As the number of remote users
to be authenticated may be large, substantial
administration problems are created.

562 M. Coetzee, J.H.P. Eloff
Methods
£ E 8 el |E
(] g 5 2 2| |5 >
— I = 5} o = =%
Remote g 2 Header: g g > gi‘
user g 2 Auth. data 8 g- g O
1\ J2EE/ NET)
Requlestor Provitljer
Trust (Public Key Infrastructure)
Figure 1 Current Web Service access control.

In order to alleviate cross-domain administra-
tion problems, new approaches to authentication
are being developed. Requestors and Web Service
providers each have their own authentication
mechanisms. Costly investments are avoided by
allowing each domain to do its own authentication,
but to provide loose coupling between authenti-
cation systems with assertions. For instance, the
requestor can send an identity assertion such as
“John was successfully authenticated with his
password at 12:00 h on 4 April 2004 by www.ABC.
com” to the Web Service provider. John is granted
access to methods of the Web Service provider
because the requestor previously authenticated
him. For the Web Service provider to accept
this assertion, a relationship of trust with the re-
questor is required. A Web Service provider may
not be interested in the real identities of the
remote users, but rather in their ability or role
requested on their behalf by the requestor.
The requestor can make an assertion such as
““the remote user is an employee” or ‘‘the remote
user is female” to the Web Service provider.

Current Web Service access control integration
is performed in a platform-dependent manner. A
credential, presented on behalf of the user, is
mapped to identities internal to the Web Service
provider. Both the J2EE (Java 2 platform) and .NET
(Microsoft.NET platform) platforms use role-based
access control (RBAC) as a means for access
control. Usernames and passwords, certificates
and assertions can all be considered as sources of
role-assignment. Generally, a static identity-
to-role lookup is used to perform role-assignment.
Assertions, which enable loose coupling between
requestors and providers, are not currently
supported by such assignments. Assertion-based
access control integration would thus require an

application-oriented approach where access con-
trol is performed by applications that are de-
veloped over platforms.

Effectively enforcing access control policies in
a distributed Web Service environment is difficult
with current solutions. An access control policy for
each individual Web Service is statically configured
with platform-dependent mechanisms. With time,
the access control policy and associated config-
urations become unsynchronised. The dynamic
context in which access requests are made is also
not taken into account when access control rules
are defined, and decisions taken. Access control
rules of a Web Service provider ought to be more
expressive in terms of the manner in which they
are defined. The nature and degree of access
control enforcement between requestors and Web
Service providers are also more complex to define.

As the nature of a Web Service environment is
highly distributed and heterogeneous, it is impor-
tant to establish access control of high assurance
over resources exposed by insecure SOAP connec-
tions. In order to do this, future solutions for Web
Service access control should address the following
requirements:

1. Assertion-based access control: interacting re-
mote users and Web Service providers may
know little about each other. The ability,
rather than the identity, of such a user must
be determined by a requestor, and passed to
the Web Service provider as assertions.

2. Mechanism-independent access control policy:
an access control policy must be defined so
that it is available for real-time, dynamic
decisions.

3. Policy management: access control functions
such as decision-making and enforcement must

Towards Web Service access control

563

be clearly defined for a Web Service provider.
Support must be provided for more than one
language in which access control policies can
be defined.

4. Access control integration: the authorisation
decision-making process of a Web Service
provider must be able to compose assertions
from trusted requestors with its access control
policy in a consistent manner.

5. Standards-based implementation: to allow any
number of requestors to interoperate with
a Web Service provider, a standards-based
solution is required.

The next section defines a logic-based access
control approach for a Web Service provider that
includes the above-mentioned access control re-
quirements in its design.

A logic-based access control approach
for Web Services

Web Services may be composed to create complex
services, which are supported by independent
business partners. A complex service is a combina-
tion of Web Services that collectively provide
a value-added service, such as integrated travel
planning and insurance brokering. In complex
services, a specific Web Service may take on the
role of provider as well as requestor of a service.
Access control for Web Services is addressed on
two levels. Firstly, access control for the interac-
tion between a requestor and independent Web
Service is defined. Secondly, when complex serv-
ices are processed, decisions of independent Web
Services may influence the flow of control of the
complex service. Informed access control decisions
need to be made, based on results of previous
actions. A Web Service endpoint that participates
in a complex service may prefer to keep its access
control policy private. As its access control policy

customers

= -

Any_Company

O Request_Search

O RequestOrder

employees
= P

P——

" Search_per_catego
P! gory
O Place_Order

cannot be composed with those of others, its
access control decisions are conveyed to a control-
ler. The controller orchestrates independent
““grant”’ or “deny’’ decisions of participating Web
Services, in order to control the flow of the
complex service.

The focus of this paper is narrowed down to the
first consideration. Each Web Service endpoint
that is accessed by requestors must be protected
and made secure by its own environment, as it
would be unrealistic to expect from Web Service
providers to modify their access control policies
and enforcement to comply with the requirements
of partners.

As an example, consider the following. Any_
Company, an organisational portal, enables its
customers and employees to purchase goods
through the Computer_Order service. Computer_
Order is the provider of a retail service that sells
computer and computer-related products. The
Computer_Order service exposes several methods
that can be used by requestors, some of which are
shown in Fig. 2. A Register_Business method allows
all requestors to register, in order to establish an
initial level of trust between requestors and the
Computer_Order service. Thereafter, methods are
made available to the employees and customers of
Any_Company such as searching through products
and special offers on to-be-released products,
adding selected products to a shopping basket
and placing of orders. The resulting transaction
crosses the administrative domains of both Any_
Company and Computer_Order that are adminis-
tered independently from each other.

If John, an employee of Any_Company, makes
use of such additional functionality exposed by his
customised portal, he searches for and finds
a product he would like to purchase. The Place-
Order method of the Computer_Order service is
invoked by the Any_Company requestor applica-
tion. To simplify the example, the PlaceOrder
method has only one input parameter, the stock
name to be ordered, as shown in Fig. 3.

Computer_ Order

O Register_Business

O ExpediteOrder

Figure 2 A requestor application invokes methods at a Web Service provider.

564

M. Coetzee, J.H.P. Eloff

<soap:Envelope

<m:PlaceOrders>

</m:PlaceOrder >
</soap:Body>
</soap:Envelope>

xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
<soap:Body xmlns:m="http://www.ComputerOrder.com/orders">

<m:StockName>XE2234 Laptop</m:StockName>

Figure 3

The focus of the next sections is to show how
the PlaceOrder method of Computer_Order is
protected so that only authorised remote users
are given access to it. Firstly, the structure of the
SOAP request is defined in order to show how it can
be used to convey access control information to
the Web Service provider. To enable a requestor to
formulate valid access control information, its
format must be understood, and made available
to requestors. Finally, the design of the author-
isation manager is presented, that will mediate
access requests.

The structure of the SOAP request

The incoming SOAP request from Any_Company is
routed to the PlaceOrder method at Computer_
Order. The message that is conveyed to the Web
Service endpoint in SOAP is shown in Fig. 3. For the
sake of clarity, not all message details are shown.
The SOAP message contains three different sec-
tions. Their semantics are defined with associated
XML schemas, which the receiving SOAP processor
should be able to interpret. The SOAP envelope
element defines the start and end of the message.
The SOAP body element contains the method name
and associated parameters in either the SOAP
request or response. The SOAP header element,
which is optional, allows application specific data,
not directly associated with a method request or
response to be passed to the service endpoint.

Computer_Order’s PlaceOrder method is ex-
posed, and can be called by any requestor. An
access control system is required to protect all
methods exposed by the Computer_Order service.
The access control system to be used by the
Computer_Order security domain will be unique,
as individual Web Service endpoints are autono-
mously defined and administrated.

Publish access control requirements
If an access control system is defined by Computer_

Order, administrators of Any_Company need to
understand its requirements, and how it is to be

The SOAP request for the PlaceOrder method.

used. To enable this, the Computer_Order Web
Service provider must publish well-defined access
control requirements in policy statements. This
will reduce the interdependencies between a re-
questor and Web Service provider. Generally,
requestors may not be limited to only one Web
Service provider, but may be able to select the
most secure service, based on the manner in
which access control and other security services
are implemented.

WSDL supports the description of method inter-
faces, but not any access control or other security
requirements. WS-Policy (Box et al., 2003) pro-
vides a grammar for requestors and Web Service
providers to communicate their requirements and
capabilities in a machine-readable XML format. A
policy is a collection of one or more policy
assertions, and is bound to a Web Service provider
through a policy attachment. WS-Policy defines the
security requirements related to authentication,
integrity and confidentiality of SOAP messages. No
expectations in terms of access control are cur-
rently described. An extension to WS-Policy is
required that would provide all or some of the
access control policy requirements to potential
requestors so that they can make decisions re-
garding if and how they can use a service. An
optional (AccessControlPolicy) element can be de-
fined to publish such requirements. The Any_
Company portal would need to understand the
semantics of the published access control require-
ments. Currently, only humans can determine or
decipher published access control semantics
through a static inspection at design time as
depicted in Fig. 6. Careful consideration should
be given to the requirements that are exposed, as
they may lead to a security domain being ex-
ploited.

The Computer_Order service may have specific
access control requirements for each exposed
method that must be complied with. The access
control system of Computer_Order is not interest-
ed in the real identity of John, but rather in his
ability, as asserted by Any_Company, who must be
a trusted authority. For the PlaceOrder method to

Towards Web Service access control

565

be invoked successfully, it may require requestors
to make assertions about remote users such as
their credit card details, and employee or custom-
er identification number. The definition of such
access control requirements is shown in Fig. 4.
The Computer_Order service may provide an
alternative to the normal ordering process. An
expedited order process may be made available to
employees of requesting companies that are at
management level. This benefit is given to the
management of a requestor, in order to improve
the relationship with the Computer_Order service
provider. For this method to be invoked, an ad-
ditional assertion on the seniority of an employee
must be provided by the requestor. Based on
provided assertions, dynamic access is granted to
either the PlaceOrder or ExpediteOrder methods.

Formulate assertions

If assertions were passed with each method in-
vocation, it would require of each method to
perform an authorisation check before it renders
its service. If assertions are passed in the SOAP
header, the flexibility of the design is increased, as
authorisation logic is separated from application
logic. Authorisation logic can be modularised for
all methods that are exposed. The semantics of the
header containing the assertions may be defined
by the Web Service provider at http://schemas.
CompOrder.com/orderHeader, in order to allow
requestors to formulate valid requests. Based on
inspected requirements, developers of the Any_
Company portal create application code that
would enable John to formulate a request to
invoke the PlaceOrder method. A valid SOAP
header is added to the message, containing his
required assertions. Assertions may be sourced
directly from John, or may be kept in, for

instance, a corporate LDAP directory. The modi-
fied message, that includes the SOAP header with
assertions for John, is shown in Fig. 5.

Message confidentiality and integrity can be
assured by sending the SOAP message with SSL. If
required, the credit card number of John can be
encrypted with XML encryption to further protect
it. The public key of Any_Company accompanies
the assertions, in order to verify their authenticity.

Mediate an access request

The access control approach relies on an indepen-
dent authorisation manager that decouples access
control logic from application logic. An important
feature of the authorisation manager is that
its location is separated from where the access
control policy is enforced. Assertions sent by re-
mote users are inspected at the Web or Application
server that hosts the method that is requested.
Thereafter, an access request is formulated for the
authorisation manager by inspecting the SOAP
request. The authorisation manager, shown in
Fig. 6, is not directly exposed to users and reques-
tors, to keep it safe from tampering. The functions
of policy decision-making and policy enforcement
are separated, as defined by the IETF framework
for policy-based admission control (IETF Policy
Framework Working Group, 2003).

When SOAP requests for methods are mediated,
a logic-based access control system provides a
formal foundation of logical reasoning, to enable
the enforcement of consistent access control
decisions over the resources of Web Services. For
the purpose of this research project, the author-
isation manager is defined in Prolog, a logical
programming environment. The Prolog inference
engine has the potential to provide a mechanism
to derive consistent access control decisions at
runtime. It may also be used to analyse the

<AccessControlPolicy>
<DeclarationPlaceOrder>

<CreditCard>

<Issuer> </Issuer>
</CreditCards>
<IDNumber> </IDNumbers>
<PublicKey> </PublicKey>

</DeclarationPlaceOrders>
</AccessControlPolicys>

<!-- Credit card details of user -->
<CreditCardNumbers> </CreditCardNumbers>
<ExpiryDate> </ExpiryDates

<!-- ID of user, eg Customer Number or Employeed ID -->

<!-- Public key of requestor to verify authenticity of request -->

Figure 4 An extension of a WS-Policy requirement description in XML.

http://schemas.CompOrder.com/orderHeader
http://schemas.CompOrder.com/orderHeader

566

M. Coetzee, J.H.P. Eloff

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"

<soap:Header
<h:AssertionInfo
xmlns:h=http://schemas.CompOrder.com/orderHeader
<!-- assertions -->
<h:CreditCards>
<h:CreditCardNumber>9987334566785</h:CreditCardNumber>
<h:ExpiryDate>0506</h:ExpiryDate>
<h:Issuer>VISA</h:Issuer>
</h:CreditCards>
<h:IDNumber>8894</h:IDNumber>
<!-public key of requestor -->

<h:publickey>
</h:AssertionInfo>
</soap:Header>

<m:PlaceOrders>
</m: PlaceOrder >

</soap:Body>
</soap:Envelope>

<h:/publickey>

<goap:Body xmlns:m="http://www.CompOrder.com/orders">

<m:StockName>XE2234 Laptop</m:StockName>

Figure 5 A request with a header containing required assertions.

correctness and consistency of access control and
other rules. A policy base representing the access
control policy of the Web Service provider is de-
fined. Access control rules, defined in Prolog, can
be more expressive than the traditional (subject,
object, action) tuple. The access control policy is
machine-readable and directly under the control
of the administrator. It can be modified or re-
placed, without affecting Web Service methods or
other application code. It also possesses dynamic
updating capabilities. New facts from independent

policy sources can thus be added to the policy base
before decisions are made, ensuring dynamic
decisions at runtime.

Other access control approaches that have been
defined for Web Services (Bhatti et al., 2003;
Damiani et al., 2001) use XML-based policy
specification languages, which are supported by
predefined types and functions. This requires an
algebraic approach that uses policy speci-
fications in executable programs for runtime
checking. Such approaches may be considered

Any_Company

Request, facts

Authorisation Manager

Policy base

Decision

Computer_ Order

\ 4

Lo

Requirements

()
)
)

Enforcement

Figure 6 The authorisation manager mediates a request.

Towards Web Service access control

567

simpler to implement, as XML and its related
technologies are well established, but the chances
of error may increase as developers implement
application code.

The authorisation manager has the task of de-
termining whether access to a Web Service method
must be granted or denied. An access control de-
cision is made based on four aspects: a formulated
request, the relationship of trust with the re-
questor, the assertions of the remote user that
accompany the request and the access control
rules that have been defined. Each of these
aspects will now be defined in more detail.

1. A formulated request: to invoke the access
control logic of the authorisation manager, an
access request is formulated. The SOAP request
from the requestor is intercepted, before it
reaches the method it is destined for at the
Web Service provider. The SOAP message is
inspected and its parameters extracted. The
method to be accessed is PlaceOrder. A logical
access request is formulated with the access
predicated, as shown below.
access(PlaceOrder)?

2. The relationship of trust with the requestor: an
access decision is made based on assertions
that accompany a request. As assertions can
only be accepted from trusted requestors,
the authorisation manager needs to establish
whether a relationship of trust exists with the
requestor in its policy base. A relationship of
trust is created when the initial requestor re-
gistration process is performed. Any_Company
submits a credential in the form of an identify-
ing digital certificate to Computer_Order. The
public key, Krequestor, is used as a means to verify
its identity and to facilitate a relationship of
trust. This is an additional fact that is added to
the policy base, which is depicted in Fig. 6.
trust(Any_Company, Kany_company)-

If Computer_Order loses trust in the re-
questor, the statement can immediately be
removed from the set of facts, and no further
permissions would be derived for them. If, on
the other hand, such a fact can be found, the
logical decision-making process can proceed.

3. The assertions of the remote user that accom-
pany the request: if a relationship of trust
exists, assertions from a requestor can be
imported into the policy base. This is done by
translating the XML assertions found in the
SOAP header of the request into a logical
statement. The request predicate is used to
distinguish imported facts from local facts. R
request F means that the requestor R requests

formula F to be added as a new fact. The as-
sertions are identified by the assert predicate.
The public key of the requestor that accom-
panies these assertions is also used in the rule
to ensure the authenticity of the request. If
credentials are used from trusted authorities
other than the requestor, additional verifica-
tion of the key of each issuing authority must
be performed. The next clause shows how the
credit card and employee identification num-
ber of John, defined in Fig. 5, are imported as
facts into the policy base.
request(requestor(Any_Company, Kg), assert
(cc(9987334566785, 0506, VISA), id(8894))).

4. The access control rules that are defined:
access control rules are required that would
protect methods and other resources exposed
by a Web Service interface. The specific sub-
jects, objects and actions to be defined are:
Objects: objects are the service and its
methods to be accessed. Access control is
required over input and output parameters,
methods, services and collections of services
and other applications (Kraft, 2002).

Subjects: the requestor of the service is an
active subject that acts on behalf of the
remote user. Consideration should be given to
grouping subjects to facilitate administration.
Signed actions: remote users or applications
would generally be allowed to execute the
methods of a service. Permission to access
a service is either granted (+) or denied (—).
When defining an access control policy, role-
based access control (RBAC) can be useful as it
reduces the administration burden (Sandu,
1996). RBAC requires access permissions to be
assigned to roles, rather than individual users,
and users obtain permissions by virtue of being
assigned appropriate roles. Possible author-
isation rules are defined by administrators with
the following clauses:
cando(PlaceOrder, general, +exe).
cando(ExpediteOrder, management, +exe).

These two rules are added to the policy base, as
shown in Fig. 6. The first rule assigns to the
““general” role permission to execute the Place-
Order method. The second rule assigns to the
“management’ role permission to execute the
ExpediteOrder method.

Here, role-based access control mechanisms are
extended to map unknown remote users to roles
defined by a Web Service endpoint. Access control
decisions cannot be based on the identity of the
remote user, but rather on the ability, through as-
sertions that are presented. Assertions presented

568

M. Coetzee, J.H.P. Eloff

on behalf of a user may also vary from request to
request. Access control is thus dynamic, as it is
context-dependent.

In order to achieve role mapping, a logical rule is
defined for each role, which includes all assertions
that must be presented. A role is dynamically
activated for requestors based on imported
assertions with the active predicate. The access
control policy of the Web Service provider is given
a measure of protection, as roles are kept private.
Requestors understand how to access a Web Service
method, but do not know how access control rules
are evaluated.

For instance, to activate a trusted requestor in
the “‘general” role requires that the credit card
details and employee-id be presented on behalf of
the remote user. A rule is defined as follows:

active(Requestor, ““general’’):-
trust(Requestor, Kg),
request(requestor(Requestor, Kg),
(ccnumber, exdate, issuer), id(id))).

assert(cc

To activate a trusted requestor in the ‘““man-
agement” role, an additional assertion on the
seniority of the employee must be presented on
behalf of the remote user.

active(Requestor, ““management’’):-
trust(Requestor, Kg),
request(requestor(Requestor, Kg),assert(cc
(ccnumber, exdate, issuer),id(id),sen(sen))).

Finally, a decision is inferred, based on permis-
sions that have been assigned to the activated role
as follows:

Fig. 7 summarises all predicates used in the
definition of the policy base.

Infer a decision for access(PlaceOrder)?

Based on the facts and rules defined in the policy
base, a decision is inferred for access(PlaceOrder)?
A relationship of trust is found with Any_Company
and the presented assertions are evaluated. Based
on these assertions, Any_Company is activated in
the “‘general’ role. As the PlaceOrder method may
be accessed by any requestor in the “‘general”
role, the access request evaluates to TRUE. The
authorisation manager returns a “‘permit’’ decision
to the policy enforcement point, to allow the
SOAP request to invoke the PlaceOrder method.
Otherwise, a ‘‘deny” decision is returned. The
policy enforcement point returns a fault to the
requestor.

Management of imported facts

Real-time access control decisions made by the
inference engine are processed in parallel. As
assertions are imported for specific requests, re-
quest identifiers must be added to assertions, in
order to distinguish them from each other. Another
important consideration would be the manage-
ment of the lifespan of imported facts. Imported
facts must be removed from the policy base after
they have been used. Access control decisions
become dynamic, as facts are added and removed
from the policy base.

Conclusion

access(Object):- In this paper, a logic-based access control ap-
active(Requestor, Role),cando(Object, Role, proach was defined, to create a flexible, loosely
SignA). coupled access control solution for a Web Service
cando(Object, Role, SIgNA).—-------mmmmmm oo 1
trust(Requestor, Kg).------ 2
request(requestor(Requestor, Kg), assert(attrl, attr2, attr3)). -- 3
active(Requestor, Role):-
trust(Requestor, Kg),
request(requestor(Requestor, Kg), assert(attrl, attr2, attr3)). 4
access(Object):-
active(Requestor, Role),
cando(Object, Role, SignA). 5

Figure 7 Predicates used by the policy language.

Towards Web Service access control

569

endpoint. As interactions with services may change
frequently, or may exist for very limited time
periods with a limited number of transactions,
they should be composed quickly, with embedded
flexibility.

Five access control requirements were identi-
fied in this paper. The approach defined here
addressed these requirements by standardising
interactions between requestors and Web Service
providers, in order to decouple them from each
other. This was done by adding assertions defined
in XML to SOAP headers. The dynamic access
control policy of the autonomous authorisation
manager was logically defined with Prolog, allow-
ing it to be available for real-time access control
decisions. It is independent of the access control
system of the requestor, as its expectations are
published. The authorisation manager assigns roles
to requestors with changing user profiles, based on
trusted assertions. Access to service methods is
only granted if permission can be derived for it,
where the derivation step forms a formal proof. To
ensure the safety of the authorisation manager, it
is located away from policy enforcement points.

A very simple example of the composition of
requestor assertions with the access control policy
of the Web Service provider was illustrated. Future
research would include the composition of the
Web Service provider access control policy, with
complex declarations and credentials that may
allow the access request to be upgraded.

Acknowledgement

The financial assistance of the Department of
Labour (DoL) towards this research is hereby
acknowledged. This material is based upon work
supported by the National Research Foundation
(NRF) in South Africa under Grant number 2054024
as well as by Telkom and IST through THRIP. Any
opinion, findings and conclusions or recommenda-
tions expressed in this material are those of the
authors and therefore the DoL, NRF, Telkom and
IST do not accept any liability thereto.

References

Anderson A, Anderson S, Adams C, Beznosov K, Brose G,
Crocker S, et al. XACML 1.0 specification, <http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml>;
2003.

Ashley P, Au R, Looi M. Cross-domain one-shot authorization
using smart cards. In: Proceedings of the seventh ACM

conference on computer and communications security. ACM
Press; 2000. p. 220—7.

Atkinson B, Bellwood T, Cahuzac M, Clément L, Colgrave J,
Corda U, et al. UDDI version 3.0.1, <http://uddi.org/pubs/
uddi-v3.0.1-20031014.htm >; 14 Oct 2003.

Bacon J, Moody K. Toward open, secure, widely distributed
services. Commun ACM 2002;45(6):59—64.

Beznosov K, Deng Y, Blakley B, Burt C, Barkley J. A resource
access decision service for CORBA-based distributed systems.
In: Proceedings of 15th IEEE annual computer security
applications conference (ACSAC ’99). IEEE Press; 1999. p.
310-9.

Bhatti R, Joshi JBD, Bertino E, Ghafoor A. Access control in
dynamic XML-based Web-services with X-RBAC. The first
international conference on Web services, Las Vegas; June
23-26, 2003.

Blaze M, Feigenbaum J, loannidis J, Keromytis A. The KeyNote
trust management system, version 2. IETF RFC-2704,
<http://www.crypto.com/papers/rfc2704.txt>; 1999.

Bonatti P, Samarati P. A unified framework for regulating access
and information release on the Web. J Comput Secur 2002;
10(3):241-72.

Box D, Curbera F, Hondo M, Kale C, Langworthy D, Nadalin A,
et al. Web Services Policy Framework (WS-Policy). <http://
www-106.ibm.com/developerworks/library/ws-polfram/ > ;
28 May 2003.

Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn N,
Nielsen HF, et al. Simple Object Access Protocol (SOAP) 1.1,
<http://www.w3.0rg/TR/SOAP/>; May 2000.

Bray T, Paoli J, Sperberg-McQueen CM, Maler E. Extensible
Markup Language (XML) 1.0. W3C recommendation. 2nd ed.
6 October 2000.

Chadwick DW, Otenko A. The PERMIS X.509 role-based privilege
management infrastructure. In: Seventh ACM symposium
on access control models and technologies. ACM Press; 2002.
p. 135—40.

Christensen E, Curbera F, Meredith G, Weerawarana S. Web
Services Description Language (WSDL) 1.1, <http://www.
w3.org/TR/wsdl>.

Coyle FP. XML, Web services and the data revolution. Addison-
Wesley; 2002.

Damiani E, De Capitani Di Vimercati S, Paraboschi S, Samarati P.
Fine-grained access control for SOAP e-services. Proceedings
of the 10th international World Wide Web Conference
(WWW10). Hong Kong; May 1-5, 2001.

Fielding R, Gettys J, Mogul J, Frystyk H. Hypertext transfer
protocol — HTTP/1.1. Network Writing Group, Request for
Comments, no. 2068; January 1997.

Foster |, Kesselman C, Pearlman L, Tuecke S, Welch V.
A community authorization service for group collabora-
tion, <www.globus.org/research/papers/CAS_2002_Revised.
pdf>.

Gottschalk K, Graham S, Kreger H, Snell J. Introduction to Web
services architecture. IBM Syst J 2002.

Hallam-Baker P, Hodges J, Maler E, McLaren C, Irving R. SAML 1.
0 specification, <http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=security >; 2003.

IETF Policy Framework Working Group. A framework for policy-
based admission control, <http://www.ietf.org/rfc/
rfc2753.txt>; 2003.

Java 2 platform, enterprise edition, <http://java.sun.com/
j2ee/>.

Johnston W, Mudumbai S, Thompson M. Authorization and
attribute certificates for widely distributed access control.
In: Proceedings of seventh IEEE international workshops on
enabling technologies: infrastructure for collaborative en-
terprises. |EEE Press; 1998. p. 340-5.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
!http://uddi.org/pubs/uddi-v3.0.1-20031014.htm
!http://uddi.org/pubs/uddi-v3.0.1-20031014.htm
http://www.crypto.com/papers/rfc2704.txt
http://www-106.ibm.com/developerworks/library/ws-polfram/
http://www-106.ibm.com/developerworks/library/ws-polfram/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
www.globus.org/research/papers/CAS_2002_Revised.pdf
www.globus.org/research/papers/CAS_2002_Revised.pdf
!http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
!http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.ietf.org/rfc/rfc2753.txt
http://www.ietf.org/rfc/rfc2753.txt
http://java.sun.com/j2ee/
http://java.sun.com/j2ee/

570

M. Coetzee, J.H.P. Eloff

Kraft R. A model for network services on the Web. Proceedings
of the third international conference on Internet computing,
IC 2002, 3:536:541, Las Vegas; June 2002.

Lam SS, Woo TYC. A framework for distributed authorization.
In: Proceedings of the first ACM conference on computer and
communications security. ACM Press; 1993. p. 112—8.

Microsoft.NET platform, <http://www.microsoft.com/net/>.

Sandu R. Access control: the neglected frontier. Proceedings of
the first Australian conference on information security and
privacy. Wollongong, Australia; June 23—26, 1996.

Ms. Coetzee is a doctoral candidate at the University of
Pretoria. Her main research interests include computer

security, access control composition and Web Services. She
received an M.Sc. degree from the Rand Afrikaans University in
2001.

Dr. Eloff is the head of the Computer Science department
at the University of Pretoria. Since 1988, he has been
a full professor in the Department of Computer Science at
the Rand Afrikaans University. Many acclaimed international
and national conferences were organised and conducted
under his leadership. He is an evaluated researcher from
The National Research Foundation (NRF), South Africa, and
an advisor to industry on various information security
projects.

Available online at www.sciencedirect.com

sc.sucs@o.“w

http://www.microsoft.com/net/

	Towards Web Service access control
	Introduction
	Distributed access control
	Existing access control for Web Services
	A logic-based access control approach for Web Services
	The structure of the SOAP request
	Publish access control requirements
	Formulate assertions
	Mediate an access request
	Infer a decision for access(PlaceOrder)?
	Management of imported facts

	Conclusion
	Acknowledgements
	References

