
Department of Computer Science
COS121 Lecture Notes: L03

Memento design pattern
28 and 29 July 2014
Copyright c©2012 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

L03.1 Introduction . 2

L03.2 UML Preliminaries . 2
L03.2.1 Class diagrams . 2
L03.2.2 Modelling delegation . 4

L03.3 Programming Preliminaries . 6
L03.3.1 Attribute defaults . 6
L03.3.2 Delegation in C++ . 6
L03.3.3 Variable sized interfaces . 13

L03.4 Memento Pattern . 13
L03.4.1 Identification . 13
L03.4.2 Structure . 14
L03.4.3 Problem . 14
L03.4.4 Participants . 14

L03.5 Memento Pattern Explained . 15
L03.5.1 Clarification . 15
L03.5.2 Implementation Issues . 15
L03.5.3 Related Patterns . 15

L03.6 Example . 15

L03.7 Exercises . 18

References . 18

1

L03.1 Introduction

This lecture note will introduce the Memento design pattern. In order to understand the
pattern, modelling delegation in UML will be discussed before the pattern is introduced.
C++ techniques required to implement the pattern will also be introduced befoer tackling
the pattern. This will support the reader to understand the example implementation of
this pattern.

L03.2 UML Preliminaries

L03.2.1 Class diagrams

Classes in UML are modelled by drawing a rectangle containing at least the class name
that is being modelled. Class names should begin with a capital letter and be descriptive.

The rectangle should divided into three sections. The top section is used for the class
name, the middle section for the attributes and the bottom section for its operations.
Figure 1 shows the basic structure of a class in UML. If sections are empty, they may
be ommitted. It is, however, recommended that all three sections be shown even if they
are empty. In some modelling software it is impossible not to draw the second and third
sections of a class even if they are empty [1].

Figure 1: Structure of a UML Class

Attributes and operations are assigned visibility. The visibility relates to whether the
feature (attribute or operation) is visible to the class that own the feature only, subclasses,
outside the class either the package or globally. The classifications for the visibility are
private, protected, package or public respectively. Private visibility is shown in UML
using a minus (-), protected a hash (#), package a tilde(˜), and public a plus (+) before
the feature. Omission of visibility means that it is either unknown or has not been shown.

Both attributes and operations can be further refined in order to be more descriptive.

Attribute refinements : There are three refinements that can be applied to attributes,
namely: default values; derived attributes and multiplicity. Figure 2 illustrates how
this are drawn in UML. dateRegistered is an example of an attribute with a default
value. age is an example of a derived attribute. The multiplicity of middleNames

states that an object of class Student may have 0 to 3 middle names representing
the state of the object. Multiplicity may further be refined showing whether the
values are ordered or unique, for example: addressLine[2..4]{ordered} indicates
that each object should have at least two and maximum 4 addressLines and that
teh order in which tjese lines are used is important.

2

Figure 2: UML class attributes

Operation specification and refinement : Operations, refer to figure 3, have the fol-
lowing form when specified in a class diagram: operationName(parameter list)

: return type. The parameter list is optional, but if included each param-
eter will have a basic form of: parameter name : parameter type, with the
parameter name being optional. Thus, setName(name : String) may also be
expressed as setName(: String). Omission of the return type assumes it to be
void.

Parameters may further be assigned default values. The form to assign default
values is by adding = default value to the basic form of a parameter. An example
would be assigning the current date to the date of registration for the operation for
registration approval, that is: registrationApproved(date : Date = today).
Each parameter can further be specified as in, out, or inout in order to distinguish
between pass-by-value and pass-by-reference in the implementation. The default is
pass by value and is therefore in.

Figure 3: UML class operations

In some UML modelling tools it is possible to group operations using stereotypes
which include <<constructor>>, <<query>>, <<update>> etc. Adding properties
to features is also possible.

3

L03.2.2 Modelling delegation

Modelling delegation relationships between UML classes is achieved by drawing a solid
line between the classes involved in the relationship. Figure 4 shows two classes named
ClassA and ClassB that are associated with one another.

Figure 4: Binary relationship

As with attributes, relationships also have multiplicity indicating the number of object
instances at the other end of the relationship for an instance of the current class. The
omission of multiplicity assumes 1. In figure 5, the relationship shows that a library may
have many books, but that a book may belong to only one library.

Figure 5: Binary Directed Association showing multiplicity

Associated with multiplicity are role names and possibly their respective visibility. Fig-
ure 6 shows how this is achieved in UML. A student object will require to have exactly
one Address object for the relationship of home address.

Figure 6: Relationships with role names

Relationships, modelling delegation can be refined into two types of relations namely
dependencies and associations. Things such as naming a parameter type and creating an
object in a temporary variable imply a dependency. Associations are tighter relationships
than what dependencies are. An association is used to represent something like a field
in a class. Associations also come in two levels of granularity, namely: aggregation and
composition.

Each of these delegation-based relationships will be discussed further in the sections that
follow. Code that can serve as examples of how to implement the different relationship
types using C++ can be found in Section L03.3.2.

4

Dependency (uses-a relationship) indicates that there is a dependency between the two
classes in that one class makes use of the other class. Making use of a class could
either be as a parameter to an operation in the class or as a local variable in an
operation of the class. This relationship is weak and is shown in UML by an arrow
with a dotted line from the class that is using to the class that is being used. In the
dependency relationship shown in figure 7, CrazyPrinter’s print operation accepts
a pointer to an object of DoubleWrapper as a parameter.

Figure 7: Dependency relationship

Association two types exist:

• Aggregation (has-a relationship) represents either a “part-whole” or a “part-
of” association in which the life dependency of the objects involved are inde-
pendent of each other. The association is drawn as a solid line with an open
diamond on the side of the “whole”-side of the relationship. Figure 8 shows
that class APrinter has-a association with class DoubleWrapper.

Figure 8: Aggregation association

• Composition (owns-a relationship) is stronger than aggregation in which the
life-times of the objects are the same. It is important to note that the multi-
plicity of the the “whole” must either be 0..1 or 1. The multiplicity of the
“part” may be anything. The association is shown in figure 9. When Anoth-
erPrinter goes out of scope, the DoubleWrapper object associated with it will
also automatically go out of scope and therefore the tight association between
the two classes.

5

Figure 9: Composition association

L03.3 Programming Preliminaries

L03.3.1 Attribute defaults

Assigning attribute default values, such as dateRegistered in figure 2, in C++ cannot
be done in the class definition, but must be initialised in the constructor. The default
constructor therefore should be implemented so that the compiler does not provide an
implementation of its own. If possible one should use initialiser lists in the constructor
header to assign the initial values to its attributes rather than having an assignment
statement in the body of the constructor.

L03.3.2 Delegation in C++

For each of the relationships described in section L03.2.2, the corresponding implementa-
tion in C++ will be provided. As can be seen from the figures presented in Figures 7 and 8,
CrazyPriter and APrinter are both associated with the same DoubleWrapper class im-
plementation. To illustrate composition, as shown in Figure 9, AnotherPrinter is asso-
ciated with a similar class called StrongDoubleWrapper. The reason that the same class
could not be used in this example is because the object is created on stack memory and in
order for it to be copied successfully (that is, for a deep copy to take place) the assignment
operator must be implemented.

6

The header file and corresponding implementation for the DoubleWrapper is given by:

DoubleWrapper.h

#ifndef DoubleWrapper H
#define DoubleWrapper H

class DoubleWrapper
{

public :
DoubleWrapper () ;
DoubleWrapper (double v) ;
˜DoubleWrapper () ;
void setValue (double v) ;
double getValue () ;

private :
double∗ value ;

} ;
#endif

DoubleWrapper.C

#include <iostream>
#include ”DoubleWrapper . h”
using namespace std ;

DoubleWrapper : : DoubleWrapper () : va lue (0) {}

DoubleWrapper : : DoubleWrapper (double v)
{

value = new double (v) ;
}

void DoubleWrapper : : setValue (double v)
{

i f (va lue != 0)
{

delete value ;
}
value = new double (v) ;

}

double DoubleWrapper : : getValue ()
{

i f (va lue != 0)
{

return ∗ value ;
}
return −1;

}

7

DoubleWrapper : : ˜ DoubleWrapper ()
{

i f (va lue != 0)
{

delete value ;
va lue = 0 ;

}
}

Note that value can be initialied in the initialiser list when the default constructor is
implemented. However this is not possible for the constructor taking an initial value as
parameter because the memory dynamic allocation needed to initialise this value can not
be done using the initialiser list. The initialiser list can only be used for heap allocation.

Dependency relationship requires the class to use DoubleWrapper either as a param-
eter to a operation or to be defined locally in an operation. In the example given
in figure 7 the relationship is as a parameter to an operation. The code is given in
the following header and implementation files for CrazyPrinter.

CrazyPrinter.h

#ifndef CrazyPrinter H
#define CrazyPrinter H

#include ”DoubleWrapper . h”

class CrazyPrinter
{

public :
CrazyPrinter () ;
void pr in t (DoubleWrapper ∗) ;

} ;

#endif

CrazyPrinter.C

#include <iostream>

#include ” CrazyPr inter . h”

CrazyPrinter : : CrazyPrinter (){}

void CrazyPrinter : : p r i n t (DoubleWrapper∗ va l)
{

std : : cout<< val−>getValue () << std : : endl ;
}

8

Aggregation association relationship is a relationship in which the class APrinter

has a handle to an object of DoubleWrapper as can be seen in figure 8. The handle
is a pointer to an instance of the wrapper object in heap memory.

APrinter.h

#ifndef APrinter H
#define APrinter H

#include ”DoubleWrapper . h”

class APrinter
{

public :
APrinter (DoubleWrapper ∗) ;
˜ APrinter () ;
void pr in t () ;
void update (DoubleWrapper ∗) ;

protected :
APrinter () ;

private :
DoubleWrapper∗ doubleValue ;

} ;
#endif

APrinter.C

#include <iostream>
#include ” APrinter . h”

using namespace std ;

APrinter : : APrinter (DoubleWrapper∗ value) : doubleValue (va lue) {}

void APrinter : : p r i n t ()
{

i f (doubleValue != 0)
{

cout << doubleValue−>getValue () << endl ;
}
else
{

cout << ” undef ined ” << endl ;
}

}

void APrinter : : update (DoubleWrapper∗ doubleValue)
{

this−>doubleValue = doubleValue ;
}

9

APrinter : : ˜ APrinter ()
{

doubleValue = 0 ;
}

Composition association relationship requires the life-times of the two objects to be
closely dependent on each other. In order to achieve this in C++ it must either
be coded in the destructor of the class that acts as the owner, or stack memory
can be used to enforce the requirement of ownership. The UML class diagram in 9
makes use of the stack to enforce ownership. Therefore the implementation of the
class DoubleWrapper needs to include an implementation for at least the assignment
operator to successfully implement deep copies when objects of DoubleWrapper as
assigned to each other within AnotherPrinter.

RobustDoubleWrapper.h

#ifndef RobustDoubleWrapper H
#define RobustDoubleWrapper H

class RobustDoubleWrapper
{

public :
RobustDoubleWrapper () ;
// copy cons t ruc t o r added
RobustDoubleWrapper (const RobustDoubleWrapper &);
RobustDoubleWrapper (double) ;
˜RobustDoubleWrapper () ;
// assignment opera tor added
RobustDoubleWrapper& operator = (const RobustDoubleWrapper &);
void setValue (double) ;
double getValue () ;

private :
double∗ value ;

} ;
#endif

RobustDoubleWrapper.C

#include <iostream>
#include ”RobustDoubleWrapper . h”

using namespace std ;

RobustDoubleWrapper : : RobustDoubleWrapper () : va lue (0){}

10

RobustDoubleWrapper : :
RobustDoubleWrapper (const RobustDoubleWrapper& c)

{
i f (va lue != 0)
{

delete value ;
}
value = new double (∗ (c . va lue)) ;

}

RobustDoubleWrapper : : RobustDoubleWrapper (double v)
{

value = new double (v) ;
}

RobustDoubleWrapper : : ˜ RobustDoubleWrapper ()
{

i f (va lue != 0)
{

delete value ;
va lue = 0 ;

}
}

RobustDoubleWrapper& RobustDoubleWrapper : :
operator = (const RobustDoubleWrapper& s)

{
i f (va lue != 0)
{

delete value ;
}
value = new double (∗ (s . va lue)) ;
return ∗ this ;

}

void RobustDoubleWrapper : : setValue (double v)
{

i f (va lue != 0)
{

delete value ;
}
value = new double (v) ;

}

11

double RobustDoubleWrapper : : getValue ()
{

i f (va lue != 0)
{

return ∗ value ;
}
return −1;

}

AnotherPrinter.h

#ifndef AnotherPrinter H
#define AnotherPrinter H

#include ”RobustDoubleWrapper . h”

class AnotherPrinter
{

public :
AnotherPrinter (RobustDoubleWrapper∗ doubleValue) ;
˜ AnotherPrinter () ;
void pr in t () ;
void update (RobustDoubleWrapper∗ doubleValue) ;

protected :
AnotherPrinter () ;

private :
RobustDoubleWrapper doubleValue ;

} ;
#endif

AnotherPrinter.C

/∗
Note : the commented code d e s c r i b e the changes
r e qu i r ed compared to the c l a s s APrinter
∗/

#include <iostream>

#include ” AnotherPrinter . h”

using namespace std ;

AnotherPrinter : : AnotherPr inter (RobustDoubleWrapper∗ value)
{

// cannot use i n i t i a l i s e r l i s t owing to de r e f e rnc ing needed .
doubleValue = ∗ value ;

}

12

void AnotherPrinter : : p r i n t ()
{

// no cond i t i on needed −− doub leValue i s on the s t a c k
// a l s o note the use o f . i n s t ead o f −> to c a l l the func t i on
cout << doubleValue . getValue () << endl ;

}

void AnotherPrinter : : update (DoubleWrapper∗ value)
{

// dere f e r ence va lue b e f o r e a s s i gn in g
doubleValue = ∗ value ;

}

AnotherPrinter : : ˜ AnotherPr inter () {}
// doub leValue i s on the s t a c k and i s au t oma t i c a l l y r e l e a s e d .

L03.3.3 Variable sized interfaces

In the memento pattern there is a need to create a class which has a narrow interface with
one class while having a wider interface with another class. By default all classes that
interface with a given class will share the same size interface. If a class is known to the
class that has to provide variable sized interfaces, its interface can be widened in C++
by defining the known as a private friend class of the class allowing it to access members
that are not public.

Friends in C++
In order for another class to be able to access features in a given class that are not
public, the class must be assigned “friend”-status. Friend status can be protected or
private. The visibility of the “friend”-status specifies to which category of members
of the class the friend will be granted access. Refer to the example in section L03.6 to
see how the Originator is given private friend status of the Memento class to widen
the interface of the Memento class with the Originator class while maintaining a
narrow interface of the Memento class with the Caretaker class.

L03.4 Memento Pattern

L03.4.1 Identification

Name Classification Strategy
Memento Behavioural Delegation (Object)
Intent
“Without violating encapsulation, capture and externalise an object’s internal
state so that the object can be restored to this state later.” ([2]:283)

13

L03.4.2 Structure

Figure 10: The structure of the Memento Pattern

L03.4.3 Problem

The memento pattern enables an object to be restored to its previous state. Memento
can be seen as a snapshot of the system at a particular point in time.

L03.4.4 Participants

Originator

• an object with an internal state which it creates a snapshot of to store

• the snapshot is used to restore the state

Memento

• takes a snapshot of as much state as required by the originator

• only allows the originator access to the state

Caretaker

• keeps the memento safe

• is unaware of the structure of the memento

14

The two main participants on the pattern are the Originator and the Caretaker. A wide
interface exists between the Originator and the Memento, while a narrow interface exists
between the Caretaker and the Memento.

L03.5 Memento Pattern Explained

L03.5.1 Clarification

The memento pattern is handy when there is the need to keep information in tact for use
at a later stage. The pattern is only useful when the time taken to store and later restore
the state does not impact heavily on the functionality and performance of the system
being developed.

L03.5.2 Implementation Issues

A problem that may occur when using the memento is that the internal state of the
originator object may be inadvertently be exposed.

L03.5.3 Related Patterns

Command
Command can make use of mementos to maintain the state of commands, in the
order they were issued, in order to support undoable operations.

Iterator
Mementos can be used for iteration to maintain the state of the iterator.

Bridge
The bridge pattern can be applied in order to separate the interface from the imple-
mentation of the memento in order to provide the wide interface between the orig-
inator and the memento without using the friend technique which violates object-
oriented encapsulation.

L03.6 Example

Consider a calculator application for complex numbers. As all calculators have the func-
tionality to store and recall number from memory so must this implementation of the
complex calculator. The code presented shows the essence of such an implementation and
can be extended in order to provide all operations and required calculator functionality.
The UML class diagram for the application is given in figure 11. Interesting aspects of
the implementation, and in particular the implementation for the friend relationship is
shown here.

In this example we give inline implementations of all definitions and assume that all
code is written in a single .cpp file. When doing this the order in which the classes
are presented is inportant. One class cannot use another class before it is declared. In

15

this case ComplexNumber requires StoredComplexNumber to be defined before itself and
vice versa. In such a case one determine which of the two requires the most detail of
the other to be exposed and declare the that requires the least information of the other
first. As can be seen from the implementation of the class , it does not need much detail
regarding the ComplexNumber class. It basically needs to know that it exists. Therefore
class StoredComplexNumber can be defined before class ComplexNumber as long as the line
class ComplexNumber; (a forward declaration similar to a function proptoty) is inserted
just before where class StoredComplexNumber is defined.

Figure 11: Class diagram for an implementation of a complex number calculator that
illustrates the Memento design pattern.

Here is the definition with inline implementetion of the StoredComplexNumber class.
Note how the constructor is declared private to prevent other classes to be able to create
objects of this kind. By giving the class ComplexNumber friend status it is granted access
to the private variables and methods of the class. Therefore it will be able to create objects
of this kind and also access its private variables. Also note that an initialiser list can not
be applied in this constructor because memory for the state variable is to be allocated
on the heap.

class StoredComplexNumber
{

public :
virtual ˜StoredComplexNumber ()
{

delete s t a t e ;
}

private :
friend class ComplexNumber ;

StoredComplexNumber (double val1 , double va l2)
{

16

s t a t e = new State (val1 , va l2) ;
}
State ∗ s t a t e ;

} ;

ComplexNumber excerpts

ComplexNumber : : ComplexNumber () : r e a l (0) , imaginary (0) {}

ComplexNumber : : ComplexNumber (double r ea l , double imaginary)
: r e a l (r e a l) , imaginary (imaginary) {}

StoredComplexNumber∗ ComplexNumber : : createMemento ()
{

return new StoredComplexNumber (r e a l , imaginary) ;
}

void ComplexNumber : : reinstateMemento (StoredComplexNumber∗ mem)
{

State ∗ s = mem−> s t a t e ;
r e a l = s−>g e t F i r s t () ;
imaginary = s−>getSecond () ;

}

Note how the instance variables of this class are initiated through the use of initialiser
lists because they are allocated on the heap.

Implementation of the Caretaker

class Store
{

public :
void storeMemento (StoredComplexNumber∗ mem)
{

mem = mem;
} ;

StoredComplexNumber∗ retreiveMemento ()
{

return mem ;
} ;

˜ Store ()
{

delete mem ;
} ;

private :
StoredComplexNumber∗ mem ;

} ;

The design includes the implementation of the State class. This class encapsulates all the
instance varaiables of the ComplexNumber class. It is used by the StoredComplexNumber

17

class. While it is not required that the complete state of the originator be stored in a
single object, it is recommended because it may simplify the combination of the memento
pattern with other patterns.

L03.7 Exercises

1. Change the example given for composition so that the object in AnotherPrinter is
not on the stack but on the heap without changing the relationship to aggregation
as in the APrinter example.

2. Extend the example in L03.6 to include more calculator-like functionality.

References

[1] Bennett S, Skelton J, and Lunn K (2001) Schaum’s Outline of UML. UK: McGraw-Hill
Professional.

[2] Gamma E, Helm R, Johnson R, and Vlissides J (1994) Design patterns : elements of
reusable object-oriented software. Reading, Mass: Addison-Wesley.

18

