
Department of Computer Science
COS121 Lecture Notes: L20

Mediator Design Pattern
15 and 16 September 2014
Copyright c©2014 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

L20.1 Introduction . 2

L20.2 Mediator Design Pattern . 2
L20.2.1 Identification . 2
L20.2.2 Structure . 2
L20.2.3 Participants . 2
L20.2.4 Problem . 3

L20.3 Mediator pattern explained . 3
L20.3.1 Purpose . 3
L20.3.2 Improvements achieved . 3
L20.3.3 Implementation issues . 4
L20.3.4 Related patterns . 4

L20.4 Example . 4

References . 6

1

L20.1 Introduction

The mediator design pattern extends the observer pattern. Where the observer registers
observers that get updated whenever the subject changes, the mediator registers colleagues
that get updated whenever one of the other colleagues notifies the mediator of an update.

L20.2 Mediator Design Pattern

L20.2.1 Identification

Name Classification Strategy
Mediator Behavioural Delegation
Intent

Define an object that encapsulates how a set of objects interact. Mediator pro-
motes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently. ([1]:273)

L20.2.2 Structure

Figure 1: The structure of the Mediator Design Pattern

L20.2.3 Participants

Mediator

• defines an interface for communicating with Colleague objects.

ConcreteMediator

• implements cooperative behavior by coordinating Colleague objects.

• knows and maintains its colleagues.

2

Colleague

• each Colleague class knows its Mediator object.

• each colleague communicates with its mediator whenever it would have other-
wise communicated with another colleague.

L20.2.4 Problem

We want to design reusable components, but dependencies between the potentially reusable
pieces demonstrates the spaghetti code phenomenon. When one wants to reuse only one
or a few of the classes in a group of classes, it is virtually impossible to isolate them
because they are to interconnected with one another. Trying to scoop a single serving
results in an all or nothing clump [2].

L20.3 Mediator pattern explained

L20.3.1 Purpose

Though partitioning a system into many objects generally enhances reusability, prolifer-
ating interconnections tend to reduce it again. You can avoid this problem by capsulating
the interconnections (i.e. the collective behavior) in a separate mediator object.

A mediator is responsible for controlling and coordinating the interactions of a group of
objects.

L20.3.2 Improvements achieved

Simplification of code updates
If the pattern is not applied and the behaviour of one of the classes in a group is
changed it potentially necessitates the update of each class in the group to accom-
modate the changes made to this one element. The same applies when an element
is added to the group or removed from the group. However, if the pattern is applied
such changes will only require an update in the mediator class and none of the other
classes in the group.

Increased reusability of code
The decoupling of the colleagues from one another increases their individual cohe-
siveness contributing to their reusability.

Simplification of object protocol
When refactoring into the mediator pattern a many-to-many relationship that exists
between the elements in a group of objects is changed to a one-to-many relationship
which is easier to understand and maintain.

3

L20.3.3 Implementation issues

changed()
The changed() method is implemented in the colleague interface to allow each
concrete colleague to call it. This method is used to notify the mediator of changes.
It is the responsibility of each concrete colleague to call this method whenever it
executes code that may impact on the other colleagues. Its implementation delegates
to the mediator with a statement like:

mediator−>n o t i f y (this) ;

notify()
The notify() method is called every time one of the concrete colleagues executes
the changed() method. A pointer to the concrete colleague is sent as a parameter
to allow the mediator to have knowledge about the originator of the notification.
It is not desirable to send the content or nature of an update of a colleague to
the mediator as a parameter of the notify() message. This is to insure that this
interface is stable and generic enough to allow for different kinds of colleagues. It
should get information about the nature and value of the changes that occurred and
then propagate the change to all the concrete collegues. The following is pseudo
code for the implementation of the notify() method:

Mediator : : n o t i f y (o r i g i n a t o r : Co l l egue ∗)
{

resultOfChange = o r i g i n a t o r−>get () ;
for (a l l c o l l e a g u e s)
{

s e t (resultOfChange) ;
}

}

L20.3.4 Related patterns

Facade
Facade differs from Mediator in that it abstracts a subsystem of objects to providea
more convenient interface. Its protocol is unidirectional; that is, Facade objects
make requests of the subsystem classes but not vice versa. In contrast, Mediator
enables cooperative behaviour that colleague objects don’t or can’t provide, and the
protocol is multidirectional.

Observer
Colleagues can communicate with the mediator using the Observer pattern.

L20.4 Example

Figure 2 is a class diagram of a system illustrating the implementation of the Mediator
design pattern. It is a simulation of the interaction between a number of widgets on a
file dialog. It contains simple cout statements in the function bodies of most functions

4

Figure 2: Class Diagram of a partial implementation of a file selection dialog

to be able to observe how the pattern operates. This example was adapted from [2]. The
following table summarises how the implementation relates to the participants of this
pattern:

Participant Entity in application
Mediator Dialog
Concrete Mediator FileSelectionDialog
Colleague Widget
Concrete Colleague List, Edit

changed() changed()
notify() widgetChanged(: Widget)
get() queryWidget()
set() updateWidget()

• In this example, FileSelectionDialog is the designated the mediator for all the
Widget siblings. The FileSelectionDialog does not know, or care, who the sib-
lings of Widget are.

• Whenever a simulated user interaction occurs in a child of Widget, Widget::changed()
signals it. This method does nothing except to delegate that event to the appro-
priate Dialog with the function call mediator->widgetChanged(this). Note that
the correct concrete mediator in the Dialog hierarchy will be called upon, because
mediator is a variable which as been assigned the value of the appropriate mediator,
when the child Widget was constructed. Also note that it passes a pointer to itself
to the mediator so that the mediator can know where the change originated.

• FileSelectionDialog::widgetChanged() encapsulates all collective behaviour for
the dialog box. It serves as the hub of communication. In this example it simply

5

queries the status form the Widget that signalled the change, and propagates the
change to all its dependants.

Figure 3: A Sequence Diagram to visualise the time ordering

Figure 3 illustrates how the mediator will govern the interaction between the widgets from
the moment the user changes the content of filter:Edit until all the Widget objects
are updated. Note that the sequence diagram shows only instantiated objects. Abstract
classes such as Dialog and Widget are not part of a sequence diagram.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1994.

[2] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

6

