Department of Computer Science UNIVERSITEIT VAN PRETORIA
COS121 Lecture Notes: L26 UNIVERSITY OF PRETORIA
UML Communication Diagrams <Qume# YUNIBESITHI YA PRETORIA
3 October 2014

Copyright (©2011 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

L26.1 Introduction 2

L26.2 Basic Notational Elements 3
L26.2.1 Objects and Actors 3
L26.2.2 Link line 3
L26.2.3 Messages e e 4
L26.2.4 Sequence numberso)

L26.3 Advanced notational elements 5
L26.3.1 Creation and Destruction 5
[L26.3.2 Conditional messages oL 6
L26.3.3 Iteration 6

L26.4 Examples 7
L26.4.1 Get relevant reports 7
L26.4.2 Preparing an order Lo 7
L26.4.3 Sending mail to a mailing list 8

References 9

L26.1 Introduction

UML 2.0 includes a number of interaction diagrams. These are sequence diagrams, inter-
action overview diagrams, timing diagrams and communication diagrams. In this lecture
we look specifically at communication diagrams. They are used to model which objects
interact with one another in terms of the messages they pass to one another. While all in-
teraction diagrams model these interactions, communication diagrams emphasise relations
between the originators and the receivers of messages.

The way in which object oriented programs systems produce useful results is mainly
through passing messages between objects. These messages appear in the form of method
calls. A communication diagram is used to visualise which objects are involved in the
execution of a reaction to some event. In UML 1 these diagrams were called Collaboration
diagrams.

Communication diagrams and sequence diagrams are very similar. Figure 1 illustrate the
differences and similarities between these types of diagrams. As can be seen in the figure
they both model method calls between objects. They use different layouts to show the
same information.

g el
TA »> B
A Jrrversigy of C
| | | d
. 2 doTwol)
! 1: doOnef) | 1.1: daTwol) I * 3: doThreel)
1.2: doThree()

I I 4
I I I
1 | |

Sequence diagram Communication diagram

Figure 1: Comparison of UML Sequence diagrams and UML Communication diagrams

The difference between sequence diagrams and communication diagrams can be sum-
marised as follows:

e sequence diagrams

— Easier to read call-flow sequence

— More notation options allows for higher expressiveness
e communication diagrams

— Easier to observe which objects are involved in the communication

— Free format spacing allows for easier maintainance

L26.2 Basic Notational Elements

The basic elements in a communication diagram are objects. A communication diagram
shows that there exist communication between objects by connecting them with a link line.
The detail of the communication between objects is visualised in terms of the messages
that are passed between these objects. Often the order in which messages are passed are
indicated by using sequence numbers.

L26.2.1 Objects and Actors

i sual Paradigm Standard Editi ondUn

partner : Student

partner

Figure 2: An object Figure 3: An actor

Figure 2 shows an object. The same notation that is used in UML Object diagrams and
UML Sequence diagrams to show objects, are used in UML Communication diagrams.
An object is shown as a rectangle containing the object name and the class name of which
it is an instance. The object name is separated from the class name using a colon. An
object my be anonymous. For example when an object is created but not assigned to a
variable. When an object is anonymous it is shown as a rectangle containing only the
class name of the class of which it is an instance. In this case the class name is preceded
by a colon. The objects shown in Figure 4 are anonymous objects.

Figure 3 shows the same object shown in Figure 2 as an actor. Any object may be shown
as an actor. An actor is a stick man labeled with the object name and the class name
of which it is an instance. Often actors are anonymous. When anonymous objects are
named, technically the class name should be preceded by a colon. However, this colon is
often deemed redundant.

The actor notation for objects are usually reserved to represent a user. Such user is
labeled with a name (without a colon) to specify the type of user. This usage can be seen
in Figure 7.

L26.2.2 Link line

ficual Parad

pm St t w of Pretoria)

: Register : Sale

Figure 4: A link line between objects

When objects exchange messages at any stage during execution, they are connected to
one another using a link line. A link line is a solid line connecting two objects. It merely

indicates that communication between the objects is possible. It is preferable that link
lines do not intersect in a diagram.Intersecting link lines, however, are often unavoidable.

L26.2.3 Messages

Lrattack(:Dragon)
3: GetRecoil() float

_h.

norbet : Dragon ‘ D Aggresive

2. gainExperiencel:int) ;. int

Figure 5: Messages flowing on a link line between objects

The detail of the communication between objects is visualised in terms of the messages
that are passed between objects. A message is indicated with a small arrow showing
the direction of the method call. The arrow head points toward the object that has the
method that is executed. The arrow is usually labeled with the signature of a method
that is called. The position of the label is not prescribed. It should, however, be placed
in such a way that it is clear which arrow belongs to which label. The signature of the
method need only include detail that is relevant to the situation. Usually the data types
of its parameters and return type are sufficient. If the return type of a method is void,
the return type is often omitted. Sometimes descriptive names without data types are
used. As can be seen in the label with number 3 in Figure 7, the label may even be a
description of an action in natural language.

In UML Sequence Diagrams there is an explicit distinction between methods that are
synchronous and methods that are asynchronous. Synchronous methods are those that
returns value. As explained in Section 77, different arrow head shapes are used to indicate
the distinction. Contrary to this, UML Communication diagrams do not distinguish
between methods returning values to their callers and methods that do not return values.
In UML Sequence diagrams a returning dashed line is used to indicate the passing of a
return value. In UML Communication diagrams this detail is omitted.

When multiple messages are sent between two objects, they are indicated along the same
single link line between objects. As can be seen in Figure 5, messages in both directions
may flow along the same link line.

Frimcrement Aty

_.,

topMNumber : Integer

Figure 6: A reflexive message

A reflexive message is when an object calls a method that is defined in its own class.
More often than not, reflexive messages are not shown in communication diagrams. It is,
however, permissible to show a reflexive message as shown in Figure 6.

L26.2.4 Sequence numbers

. 1: clickl;ogin[i

. HomePage
Custome
“af, 3 enter D and password
4: clickQKD
6: display() + + 2: display
: Account ‘ . LoginPage
5: validateLogin{userlD,password)

Figure 7: Messages that are numbered to indicate the order of execution

Although the order of messages are usually not relevant in communication diagrams.
The order of actions may be shown by numbering the messages in the order that they
are executed as shown in Figure 7 taken from [2]. The numbering scheme for numbering
messages in a communication diagram is not prescribed and may include sub-numberings.
Figure 11 is an example of a communication diagram that uses a decimal numbering
scheme with sub-numberings.

L26.3 Advanced notational elements

Sometimes it is necessary to indicate advanced detail about communications between
objects. In most cases when this is required a UML Sequence Diagram will serve better
to model the required detail. Additional detail that can be modelled with some limitations
is the modelling of conditional actions and repetition. In this section we deal with these
special cases.

L26.3.1 Creation and Destruction

It is important to realise that objects in a communication diagram are instantiated in-
stances of classes in a system. Creation and destruction of objects are not shown UML
communication diagrams.

[power = enemyPower] : Kill()

. —
» Aggressive smaug : Dragon

Figure 8: Syntax for a conditional flow

L26.3.2 Conditional messages

Branching happens when the program flow contains conditional statements. Figure 8
shows the notation to model a conditional message. The condition that needs to be true
for a message to be called is shown as a guard. The syntax to indicate the condition in
square brackets is the same as in UML Activity diagrams and UML State diagrams. In
this example an anonymous Aggresive object will order a Dragon object named smaug to
kill if its power is greater than that of its enemy.

L26.3.3 Iteration

Figure 9 contains notations to model iteration. Iteration is modeled by showing a * before
the method that is repeatedly executed. The condition that needs to be true for operation
to be repeated may be shown as a guard next to the *. The guard condition may be shown
as

a boolean expression (See Figure 10)

starting and ending values (See Figure 9)

a counter name (See Figure 9)

a natural language expression (See Figure 11)

*[1...n]: countStudents()
—

. Degree _~ Module

i getﬂegiatratiunstatuaf]l

_—
 calculateAvgEnroliment()

student[i] ;. Student

Figure 9: Communications including loops

Figure 9 models the communication of a system that loops through a number of mod-
ules and within each module loops through a number of students in order to calculate
the average enrolment per module for a certain degree. In this example the message
countStudents () is executed with a starting value of 1 and ending value of n. In this

case n represents the number of modules. The getRegistrationStatus() statement is
executed for each value of 7. In this case the counter 7 is used to iterate over the students
in the module.

The guard condition for a repeated statement in a UML Communication diagram is
optional (it may be omitted). In Figure 13 the guard is omitted because the condition
for the loop is obvious from the context and therefore deemed redundant.

L26.4 Examples

L26.4.1 Get relevant reports

The communication diagram in Figure 10 correlates with the loop fragment of the sequence
diagram shown in Figure 14 of L.L16_Sequence.pdf. Note how the condition for execution
of the add () message is given as a guard in terms of a boolean expression. The guard of
the loop fragment is shown as a guard for the repetition of getNextReport () message.

Note that although the getRequiredSecurityLevel () message appears in the loop frag-
ment in Figure 14 of L16_Sequence.pdf, it is not shown as an action that is repeated,
because this message is only sent once to a specific instance. Every time the loop is
executed, it executes with another instance of Report that gets the message only once.
Similarly the add() message as well as the hasAnotherReport () messages are also not
shown as a repeated statements. Having them starred here would mean that they are
loops nested inside the loop indicated by the star preceding the getNextReport () mes-
sage, which is not the case here.

aReport © Report

T . getRequiredSecurityLevel() © int

* [hasAnotherReport = true] : getNextReport() | Report
_—

system : ReportingSystem reportsEnu : Reports
_—

hasAncterReport() : bool

l[userCIeranceLevel == requiredLevel] : add(aReport | Report)

availableReports : Reports

Figure 10: Get all reports and add the relevant ones to availableReports

L26.4.2 Preparing an order

The communication diagram in Figure 11 was taken form [1]. It is actually a Collaberation
diagram in UML 1.2. It shows the communication between objects when executing the
prepare () method in the Order class.

l : Order Entry Window

l 1: prepare()

Sequence Number
‘ : Order
1.1*[for all order lines]: prepare() 1.1.2.1: needsReorder :=
needToReorder()
1.1.1: hasStock := check ()

1.1.2: [hasStock]: remove()

] Macallan line : Order LHacallan stock : Stock Item’

i1.1.2.2 [needsReorder]:

l 1.1.3: [hasStock]: new new

[: De]ivery Item ‘ : Reorder Item

g

Figure 11: Preparing an order

Note that the object names are underlined. This was required in UML 1.2 Collaberation
diagrams. In UML 2.0 object names are no longer underlined.

In this diagram decimal numbering with sub-numbers to model the order in which the
operations are executed.

The * in operation number 1.1 indicates that this operation is executed repeatedly. The
guard condition for this repetition is given as a natural language expression. It indicates
that this operation should be executed for all the order lines that exist in the system.

Operations number 1.1.2, 1.1.2.2 and 1.3 are conditional statements. The guards for all
these conditional statements are boolean values. Operations number 1.1.3 and 1.1.2.2 are
creational operations.

L26.4.3 Sending mail to a mailing list

Figure 12 is a sequence diagram showing the actions of a portion of a system that creates
a Mailer object and a Mailing List object. It then applies the Iterator design pattern
to iterate through the items on the mailing list to send an email message to each of them.

Figure 13 is the communication diagram to model the communication between the objects
in the same portion of the system that is modelled in Figure 12.

i Mailer! - -
- 0....[mar waer] ,

= MailingList() fiisserai | list : MailingList

! append(email : strinjy) e

| createlterator() : Emjaillterator* : : :

L E D Emaillterator() I Emailiterator
i isDone() : bool i i . i

| i | 'i:|
SRR e e e A :
F——————— ET————.] |

] mg, message : string) i i

I next() : i E

i isDonef) : bool | i gl
SrE——— E——————— FE——— []

Figure 12: Sequence diagram

mailer : Mailer

T* [isDone = false] : sendEmail(:string : string)

: Client : Emaillterator
—>

* [isDone = false] : next()
* [isDone = false] :isDone()

list : MailingList

append(: string)
createlterator()

* [isDone = false] : currentltem()

Figure 13: Communication diagram correlating with Figure 12

References

[1] Fowler M and Scott K (1997) UML Distilled: Applying the Standard Object Modeling
Language. Reading, Mass: Addison-Wesley.

[2] Scott K (2004) Fast Track UML 2.0. Berkeley, CA: Apress.

