
Department of Computer Science
COS121 Lecture Notes: L29

Bridge Design Pattern
20 and 21 October 2014
Copyright c©2011 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

L29.1 Introduction . 2

L29.2 Bridge Design Pattern . 2
L29.2.1 Identification . 2
L29.2.2 Structure . 2
L29.2.3 Participants . 3
L29.2.4 Problem . 3

L29.3 Bridge pattern explained . 3
L29.3.1 Motivation . 3
L29.3.2 Non-software example . 4
L29.3.3 Improvements achieved . 4
L29.3.4 Implementation issues . 5
L29.3.5 Related patterns . 6

L29.4 Example . 6

L29.5 Exercise . 7

References . 7

1

L29.1 Introduction

Separation of concerns is a general problem-solving idiom that enables us to break the
complexity of a problem into loosely-coupled, easier to solve, subproblems [3]. When
applied to software design it results in a design where the classes are cohesive and loosely-
coupled.

The Bridge pattern is a good example of the application of the principle of separation of
concerns in this context. It is motivated by the the desire to separate the interface, and
subsequently the implementation of the interface, from an abstraction.

The design resulting from the application of the Bridge design pattern is two orthogonal
class hierarchies that can vary independently.

L29.2 Bridge Design Pattern

L29.2.1 Identification

Name Classification Strategy
Bridge Structural Delegation
Intent
Decouple an abstraction from its implementation so that the two can vary inde-
pendently ([2]:151)

L29.2.2 Structure

Figure 1: The structure of the Bridge Design Pattern

2

L29.2.3 Participants

Abstraction

• defines the abstraction’s interface.

• maintains a reference to an object of type Implementor.

Refined Abstraction

• Extends the interface defined by Abstraction.

Implementor

• defines the interface for implementation classes. This interface doesn’t have
to correspond exactly to Abstraction’s interface; in fact the two interfaces can
be quite different. Typically the Implementor interface provides only primi-
tive operations, and Abstraction defines higher-level operations based on these
primitives.

Concrete Implementor

• implements the Implementor interface and defines its concrete implementation.

L29.2.4 Problem

A system has a proliferation of classes resulting from a coupled interface and numerous
implementations [4].

L29.3 Bridge pattern explained

L29.3.1 Motivation

Suppose you have a ThreadScheduler abstraction that starts off with implementations
for Unix and for Microsoft Windows. For each type of scheduler (for example a time
sliced scheduler, a preemptive scheduler, etc) you need to create two subclasses, one for
each platform of implementation. In fact any subclass of the ThreadScheduler abstraction
needs this further dual implementation. This problem is magnified if you want to make
the ThreadScheduler abstraction work on additional platforms, such as the Macintosh or
a JavaVM. For each existing subclass of ThreadScheduler, an implementation must be
created and added to the inheritance hierarchy. This example from [4] illustrates the lack
of flexibility of this simple inheritance structure shown in Figure 2. The Bridge pattern
offers a solution to avoid this kind of proliferation of classes.

With the Bridge pattern, the ThreadScheduler abstraction becomes easier to implement.
As shown in Figure 3 we have a ThreadScheduler hierarchy of all the abstract scheduler
types on the abstraction side. The implementations of these thread schedulers are pro-
vided by a separate hierarchy of implementations. The link is provided by a reference
to an implementation object, maintained in the ThreadScheduler hierarchy. Thus, any

3

Figure 2: Proliferation of classes to accommodate different schedulers for different plat-
forms

implementation, or platform specific methods are delegated to the implementation ob-
ject, which is an instance of the specific implementation currently in use. This link and
separation is the essence of the Bridge pattern.

Figure 3: A bridge to accommodate different schedulers for different platforms

L29.3.2 Non-software example

The Bridge pattern decouples an abstraction from its implementation, so that the two can
vary independently. A household switch controlling lights, ceiling fans, etc. is an example
of the Bridge. The purpose of the switch is to turn a device on or off. The actual switch
can be implemented as a pull chain, simple two position switch, or a variety of dimmer
switches [1]

L29.3.3 Improvements achieved

Greater flexibility
The coupling between an interface and its implementation is no longer fixed in terms

4

Figure 4: Household switch abstraction and implementation hierarchies

of an inheritance relation. Instead the relation is changed to delegation allowing the
binding between the interface and its implementation to change at run-time. You
can also extend the Abstraction and Implementor hierarchies independently.

Saving on compile-time
Decoupling Abstraction and Implementor eliminates compile-time dependencies on
the implementation. Changing an implementation class doesn’t require recompiling
the Abstraction class and its clients. This property is essential when you must
ensure binary compatibility between different versions of a class library.

Improved Structure
The decoupling between interface and implementation encourages layering that can
lead to a better-structured system. The high-level part of a system only has to know
about Abstraction and Implementor.

Hiding implementation details from clients
You can shield clients from implementation details. The definition of the Implemen-
tor class need only be visible to the Abstraction. It can be specified as private to
the Abstraction class, hiding it completely from the clients using the Abstraction.

L29.3.4 Implementation issues

When implementing the Bridge pattern one has to decide how the concrete implementor
objects will be instantiated.

If Abstraction knows about all ConcreteImplementor classes, then it can instantiate one
of them in its constructor; it can decide between them based on parameters passed to
its constructor. If, for example, a collection class supports multiple implementations, the
decision can be based on the size of the collection. A linked list implementation can be
used for small collections and a hash table for larger ones.

Another approach is to choose a default implementation initially and change it later
according to usage. For example, if the collection grows bigger than a certain threshold,
then it switches its implementation to one that’s more appropriate for a large number of
items.

5

It’s also possible to delegate the decision to another object altogether. This can typically
be achieved by implementing an abstract factory whose duty is to encapsulate detail
related to the characteristics of the concrete implementors. The factory knows what kind
of Concrete Implementor to create for each situation. An Abstraction simply asks the
abstract factory for an Implementor, and it returns the right kind. A benefit of this
approach is that Abstraction is not coupled directly to any of the Implementor classes.

L29.3.5 Related patterns

Adapter
Both Adapter and Bridge use delegation to implement cooperation between classes.
However, the Adapter is more often implemented

Strategy
Both Strategy and Bridge use delegation through an abstract interface to concrete
implementations performing operations. However, the operations performed by the
strategy pattern are interchangeable algorithms while the operations performed by
the bridge pattern are common operations acting on interchangeable implementa-
tions such as different data structures or different operating systems.

L29.4 Example

Figure 5: Different kinds of stacks implemented with different data structures

Figure 5 is a class diagram of our example implementation. It is a nonsense program that
implements the bridge structure to illustrate how two orthogonal hierarchies can easily
be used by a client to instantiate any type of refined abstraction implemented in terms
of any concrete implementation. Given this structure it is also easy to add more types of
stacks and/or more implementations.

6

Participant Entity in application
Abstraction Stack
Refined Abstraction LIFO Stack, HanoiStack
Implementation StackImplementor
Concrete Implementation ArrayImplementor, ListImplementor

operation() push(), pop(), isEmpty(), isFull()
implementation() push(), pop(), isEmpty(), isFull()

Abstraction

• The Stack class defines the abstraction’s interface. It provides the definition of
methods needed to implement any kind of stack. Although the pattern allows
these methods to be concrete, this implementation defines these methods as
virtual to allow the derived classes to override these methods if needed.

• Stack maintains a reference to an object of type Implementor. In this imple-
mentation the reference is established during construction and is not changed
at runtime. To be able to change it at runtime this interface has to define a
setter for stackData.

Refined Abstraction

• HanoiStack and LIFO Stack are refined abstractions. They extend the inter-
face defined by Stack. Since Stack implements the default actions on each
of the operations, which is a simple redirection to the methods in the imple-
mentation with the same name, these derived classes only have to implement
methods that deviate from the default for the specific kind of stack. In this
case LIFO Stack accepts all the default implementations

Implementor

• StackImplementor is the Implementor participant. It defines the interface
for implementation classes. In this case this interface corresponds exactly to
Abstraction’s interface. This is not required for the pattern. In fact the two
interfaces can be quite different. The Stack interface could for example have
added the peek() operation that is defined in HanoiStack without having to
change the Implementor or any of its derivatives.

Concrete Implementor

• ListImplementor and ArrayImplementors are concrete implementations of
the StackImplementor interface and defines its concrete implementation.

L29.5 Exercise

1. Change the main program of the given system to create both implementations of
both kinds of stacks.

2. Add another implementation to the given code that uses the <stack> from the C++
STL as an implementation to the given example system.

7

References

[1] Michael Duell. Non-Software Examples of Software Design Patterns. Object Magazine,
7(5):52 – 57, 1997.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1994.

[3] Hafedh Mili, Amel Elkharraz, and Hamid Mcheick. Understanding separation of con-
cerns. In Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design, 2004.

[4] Alexander Shvets. Design patterns simply. http://sourcemaking.com/design\

_patterns/, n.d. [Online; Accessed 29-June-2011].

8

