Chain of Responsibility

Linda Marshall and Vreda Pieterse

Department of Computer Science
University of Pretoria

29 and 30 September 2014

Linda Marshall and Vreda Pieterse Chain of Responsibility



Overview

@ !dentification
© Structure

@ Discussion

@ Participants

© Related Patterns
@ Example - ATM

Linda Marshall and Vreda Pieterse Chain of Responsibility



Identification

Name and Classification: Chain of
Responsibility

Intent: “Avoid coupling the sender of a
request to its receiver by giving more than
one object a chance to handle the request.
Chain the receiving objects and pass the
request along the chain until an object

handles it." (GoF:223)



Structure

Client Handlar
-successor : Handler

+handleRequest()

T

ConcreteHandlerl ConcreteHandler2
+handleRequest() +handleRequesti)

SUCCEssOr

Linda Marshall and Vreda Pieterse Chain of Responsibility



Discussion

@ The client does not need to know which

other object is going to handle the
request.

e Handling responsibilities is flexible,
objects can be added to the chain.

Linda Marshall and Vreda Pieterse Chain of Responsibility



Participants

@ Handler: Defines the interface for
handling requests and implements the
successor links.

@ ConcreteHandler: Handles requests it is
responsible for and may handle the
successor link.

@ Client: Initiates the request to a
ConcreteHandler object in the chain.

Linda Marshall and Vreda Pieterse Chain of Responsibility



Related Patterns

e Composite A component’s parent can
act as a successor. Has recursive
composition.

@ Decorator Has recursive composition.

e Command, Mediator and Observer
Also decouple senders from receivers.

Linda Marshall and Vreda Pieterse Chain of Responsibility



Example - ATM

Linda Marshall and Vreda Pieterse Chain of Responsibility



Example - ATM

-next

Dis pens er
-next : Dispenser®

+Dispenser()
+addi{)
+dispense()

Dis pens er

—next [-next: Dispenser®

ConcreteDispenser

-value : int

+ConcreteDispe nser()
+dispense()

C++ Reverse

nda Marshall a

Vreda Pieterse

+Dispenser()
+addi{)
+dispense()

ConcreteDispenser

-value : int

+ConcreteDispenser()
+dispense()

Updated

Respon



Example - ATM

int main ()

{

//Assemble the chain:
Dispenserx machine = new ConcreteDispenser (200);

machine—>add (new
machine—>add (new
machine—>add (new
machine—>add (new

int n;

ConcreteDispenser (100));
ConcreteDispenser (50));
ConcreteDispenser (20));
ConcreteDispenser (10));

cout << "Amount to be dispensed: R";

cin >> n;

machine—>dispense(n);

cout << endl;

return O;

Linda Marshall and Vreda Pieterse Chain of Responsibility



Example - ATM

int value = 200

int value = 100

int value = 50

int value = 20

Linda Marshall and Vreda Pieterse

Responsibility

int value = 10




Example - ATM

Amount to be dispensed: R285

R200 dispenser dispenses R200

R85 to small for R200 dispenser — pass on
R85 to small for R100 dispenser — pass on
R50 dispenser dispenses R50

R35 to small for R50 dispenser — pass on
R20 dispenser dispenses R20

R15 to small for R20 dispenser — pass on
R10 dispenser dispenses RI10

R5 to small for R10 dispenser — pass on
R5 can not be dispensed

Linda Marshall and Vreda Pieterse Chain of Responsibility



Example - ATM

class Dispenser{
public:
Dispenser (): next(0){ };
void add(Dispenser *n) {

if (next)
next—>add(n);
else
next = n;
+
virtual void dispense(int i) {
if(i > 0) {
if (next)
next—>dispense (i);
else
cout << "R” << i << " can not be dispensed” << endl;
} else
cout << " Required amount was dispensed” << endl;
i
private:

Dispenser*x next;

+

Linda Marshall and Vreda Pieterse Chain of Responsibility



Example - ATM

class ConcreteDispenser: public Dispenser {
public:
ConcreteDispenser(int v): Dispenser(), value(v){};
void dispense(int i) {
while (i >= value) {
cout << "R” << value << " dispenser dispenses R”
<< value << endl;

i ——= value;

cout << "R" << i << " to small for R" << value
<< " dispenser — pass on”" << endl;
Dispenser :: dispense(i);
1
private:
int value;

+

Linda Marshall and Vreda Pieterse Chain of Responsibility



