Class Adapter

Linda Marshall and Vreda Pieterse

Department of Computer Science
University of Pretoria

26 September 2014

Linda Marshall and Vreda Pieterse Class Adapter

Overview

@ !dentification
© Structure
© Discussion
@ Participants

© Examples

@ Rectangle
@ Maths

Linda Marshall and Vreda Pieterse Class Adapter

Identification

Name and Classification: Adapter
(Object and Class Structural)

Intent: “Convert an interface of a class into
another interface clients expect. Adapter lets
classes work together that couldn’t otherwise

because of incompatible interfaces. "
GoF(139)

Linda Marshall and Vreda Pieterse Class Adapter

Structure

Object Adapter

d Target Adaptee
Client +request() +specifiedRequesti)
adaptee 0.1
void request() Adapter
{ B b -adaptee : Adaptee®

+request()

;E.Iaptee—> specifiedRequest();

=

Linda Marshall and Vreda Pieterse Class Adapter

Structure

Class

fard Elientn e | Target Adaptee
+requesti) +specifiedRe quest()

< <implementation= >

void request() Adapter
{ +request()

specifiedRequest();

H

Linda Marshall and Vreda Pieterse Class Adapter

Discussion

@ Used to modify existing interfaces make
it work after it has been designed

@ Class Adapter makes use of mixins.
Adapter inherits and implements Target
(public inheritance). Adapter inherits
only the implementation of Adaptee
(private inheritance).

Linda Marshall and Vreda Pieterse Class Adapter

Discussion

Inheritance access specifier of derived class

Base member visibility

public protected private

public | Derived access speci- | Derived access speci- | Derived access speci-
fier is public. Derived | fier is protected. De- | fier is private. De-
class can access the | rived class can access | rived class can access
member and so can an | the member, but there | the member, but there
outside class. is no access from an | is no access from an

outside class. outside class.
protected | Derived access speci- | Derived access speci- | Derived access speci-
fier is protected. De- | fier is protected. De- | fier is private. De-
rived class can access | rived class can access | rived class can access
the member, but there | the member, but there | the member, but there
is no access from an | is no access from an | is no access from an

outside class. outside class. outside class.
private | Derived access speci- | Derived access speci- | Derived access speci-
fier is private. De- | fier is private. De- | fier is private. De-
rived class cannot ac- | rived class cannot ac- | rived class cannot ac-
cess the member and | cess the member and | cess the member and
there is no access from | there is no access from | there is no access from

an outside class. an outside class. an outside class.

Linda Marshall an

Vreda Pieterse

Class Adapter

Participants

These are the same as the Object Adapter
o Target
o Adapter
@ Adpatee
@ Client

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

[F"GLOBAL ™ “ Rectangle | LegacyRectangle
+draw(: void | -x1_: Coordinate

-y1_: Coordinate

-x2_: Coordinate

-y2_: Coordinate

+LegacyRectangle(x1 : Coordinate, y1 : Coordinate, x2 : Coordinate, y2 : Coordinate)

& $ 40

<<implementation> >

|+main() ~int

-x1_|-yl_|-x2_(-y2_

RectangleAdapter
+RectangleAdapterix : Coordinate, y : Coordinate, w: Dimension, h : Dimension)
+draw() : void

<<Typedef>>
Coordinate

Linda Marshall and Vreda terse Class Adapter

Rectangle

Maths

Examples

@ LegacyRectangle defines a rectangle
using the top left and bottom right
coordinates of the corners

@ Rectangle defines a rectangle with the
top left coordinate and then the width
on the x-axis and height in the y-axis

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

class RectangleAdapter : public Rectangle,
private LegacyRectangle

public:
RectangleAdapter(Coordinate x, Coordinate vy,

Dimension w, Dimension h)
LegacyRectangle(x, y, xt+w, y+h)

virtual void draw()

oldDraw ();

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

Target MyMaths
++{) x:'T
+*) - :T
+=0 +MyMaths ()
+addi
+multiplyi)
+setX)
+sety()

|

< <implementations >

NewMaths
+MNewMathsi()
+MNewMaths()
++{)
+*)
+=()
+~NewMaths()

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

@ MyMaths.h and MyMaths.cpp do not
need to change

@ Target remains the same

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

#ifndef MYMATHSH
#define MYMATHSH

template <typename T>
class MyMaths {
public:

MyMaths (T, T);
T add ();
).

T multiply ():
protected: // Access to the setters no longer needed
void setX(T);
void setY (T);
private:
T x;

T y;

i
#include "MyMaths.cpp”

#endif

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

Remember, T must be:
@ assignable
@ copy constructible; and
@ operators + and * must be defined; and

@ if T allocates memory on the heap -
destructible as well

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

#ifndef TARGETH
#define TARGETH

class Target {

public:
virtual int operator+(int) = 0;
virtual int operator*(int) = 0;
virtual int operator=(int) = 0;

i
#endif

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

@ NewMaths.h changes a little
@ add private inheritance
@ remove private member
@ instantiation and reference to the
adaptee object removed from
NewMaths.cpp
e influences the constructor and destructor
- no need to construct and destruct
adaptee
e calls to members of adaptee replaced
with direct calls to functions in MyMaths

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle
\WEYH

Examples

#ifndef NEWMATHSH
#define NEWMATHSH

#include " Target.h”
#include " MyMaths.h”

class NewMaths : public Target, private MyMaths<int>

public:
NewMaths ();
NewMaths(int);
virtual int operator+(int);
virtual int operator=*(int);
virtual int operator=(int);
“NewMaths ();

//private:

// MyMaths<int >x adaptee;

i
#endif

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

NewMaths :: NewMaths() : MyMaths<int >(0,0)

//adaptee = new MyMaths<int >(0,0);

NewMaths :: NewMaths(int v) : MyMaths<int >(v,0)

//adaptee = new MyMaths<int >(v,0);

}

NewMaths::~ NewMaths ()

//delete adaptee;

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

int NewMaths:: operator+(int i)

//adaptee—>setY (i);
//return adaptee—>add ();
setY (i);

return add();

}
int NewMaths:: operator*(int){ ... }
int NewMaths:: operator=(int v)
//adaptee—>setX(v);
//return v;

setX(v);
return v;

Linda Marshall and Vreda Pieterse Class Adapter

Rectangle

Maths

Examples

#include <iostream>
#include " Target.h”
#include "NewMaths.h”

using namespace std;
int main()
{
Targetx obj = new NewMaths(4);
int temp;
temp = (*xobj +3);
cout << temp << endl;
xobj = 10;
temp = (xobj + 3);
cout << temp << endl;

return O;

Linda Marshall and Vreda Pieterse Class Adapter

	Identification
	Structure
	Discussion
	Participants
	Examples
	Rectangle
	Maths

