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Identification

Name and Classification: Adapter
(Object and Class Structural)

Intent: “Convert an interface of a class into
another interface clients expect. Adapter lets
classes work together that couldn’t otherwise

because of incompatible interfaces. "
GoF(139)
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Structure

Object Adapter

d Target Adaptee
Client +request() +specifiedRequesti)
adaptee 0.1
void request() Adapter
{ B b -adaptee : Adaptee®

+request()

;E.Iaptee—> specifiedRequest();

=

Linda Marshall and Vreda Pieterse Class Adapter



Structure

Class

fard Elientn e | Target Adaptee
+requesti) +specifiedRe quest()

< <implementation= >

void request() Adapter
{ +request()

specifiedRequest();

H
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Discussion

@ Used to modify existing interfaces make
it work after it has been designed

@ Class Adapter makes use of mixins.
Adapter inherits and implements Target
(public inheritance). Adapter inherits
only the implementation of Adaptee
(private inheritance).
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Discussion

Inheritance access specifier of derived class

Base member visibility

public protected private

public | Derived access speci- | Derived access speci- | Derived access speci-
fier is public. Derived | fier is protected. De- | fier is private. De-
class can access the | rived class can access | rived class can access
member and so can an | the member, but there | the member, but there
outside class. is no access from an | is no access from an

outside class. outside class.
protected | Derived access speci- | Derived access speci- | Derived access speci-
fier is protected. De- | fier is protected. De- | fier is private. De-
rived class can access | rived class can access | rived class can access
the member, but there | the member, but there | the member, but there
is no access from an | is no access from an | is no access from an

outside class. outside class. outside class.
private | Derived access speci- | Derived access speci- | Derived access speci-
fier is private. De- | fier is private. De- | fier is private. De-
rived class cannot ac- | rived class cannot ac- | rived class cannot ac-
cess the member and | cess the member and | cess the member and
there is no access from | there is no access from | there is no access from

an outside class. an outside class. an outside class.
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Participants

These are the same as the Object Adapter
o Target
o Adapter
@ Adpatee
@ Client
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[F"GLOBAL ™ “ Rectangle | LegacyRectangle
+draw( : void | -x1_: Coordinate

-y1_: Coordinate

-x2_: Coordinate

-y2_: Coordinate

+LegacyRectangle(x1 : Coordinate, y1 : Coordinate, x2 : Coordinate, y2 : Coordinate)

& $ 40

<<implementation> >

|+main() ~int

-x1_|-yl_|-x2_(-y2_

RectangleAdapter
+RectangleAdapterix : Coordinate, y : Coordinate, w: Dimension, h : Dimension)
+draw() : void

<<Typedef>>
Coordinate
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@ LegacyRectangle defines a rectangle
using the top left and bottom right
coordinates of the corners

@ Rectangle defines a rectangle with the
top left coordinate and then the width
on the x-axis and height in the y-axis
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class RectangleAdapter : public Rectangle,
private LegacyRectangle

public:
RectangleAdapter( Coordinate x, Coordinate vy,

Dimension w, Dimension h )
LegacyRectangle( x, y, xt+w, y+h )

virtual void draw()

oldDraw ();
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Target MyMaths
++{) x:'T
+*) - :T
+=0 +MyMaths ()
+addi
+multiplyi)
+setX)
+sety()

|

< <implementations >

NewMaths
+MNewMathsi()
+MNewMaths()
++{)
+*)
+=()
+~NewMaths()
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@ MyMaths.h and MyMaths.cpp do not
need to change

@ Target remains the same
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#ifndef MYMATHSH
#define MYMATHSH

template <typename T>
class MyMaths {
public:

MyMaths (T, T);
T add ();
).

T multiply ():
protected: // Access to the setters no longer needed
void setX(T);
void setY (T);
private:
T x;

T y;

i
#include "MyMaths.cpp”

#endif
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Remember, T must be:
@ assignable
@ copy constructible; and
@ operators + and * must be defined; and

@ if T allocates memory on the heap -
destructible as well
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#ifndef TARGETH
#define TARGETH

class Target {

public:
virtual int operator+(int) = 0;
virtual int operator*(int) = 0;
virtual int operator=(int) = 0;

i
#endif
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@ NewMaths.h changes a little
@ add private inheritance
@ remove private member
@ instantiation and reference to the
adaptee object removed from
NewMaths.cpp
e influences the constructor and destructor
- no need to construct and destruct
adaptee
e calls to members of adaptee replaced
with direct calls to functions in MyMaths
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#ifndef NEWMATHSH
#define NEWMATHSH

#include " Target.h”
#include " MyMaths.h”

class NewMaths : public Target, private MyMaths<int>

public:
NewMaths ();
NewMaths(int);
virtual int operator+(int);
virtual int operator=*(int);
virtual int operator=(int);
“NewMaths ();

//private:

// MyMaths<int >x adaptee;

i
#endif
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NewMaths :: NewMaths() : MyMaths<int >(0,0)

//adaptee = new MyMaths<int >(0,0);

NewMaths :: NewMaths(int v) : MyMaths<int >(v,0)

//adaptee = new MyMaths<int >(v,0);

}

NewMaths::~ NewMaths ()

//delete adaptee;
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int NewMaths:: operator+(int i)

//adaptee—>setY (i);
//return adaptee—>add ();
setY (i);

return add();

}
int NewMaths:: operator*(int){ ... }
int NewMaths:: operator=(int v)
//adaptee—>setX(v);
//return v;

setX(v);
return v;
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#include <iostream>
#include " Target.h”
#include "NewMaths.h”

using namespace std;
int main()
{
Targetx obj = new NewMaths(4);
int temp;
temp = (*xobj +3);
cout << temp << endl;
xobj = 10;
temp = (xobj + 3);
cout << temp << endl;

return O;
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