
Coding Standards
University of Pretoria

1

Coding standards are laid
down to achieve quality code

that is...

• Robust

• Less error prone

• Easier to understand

• Maintainable

2

Classification

3

• Style
- Deal with layout issues.

• Clarity
- Enhance the readability and understandability of code.

• Flexibility
- Methods to build adaptable and portable code.

• Reliability
- Guidelines aimed at robust and error-free code.

• Effectiveness
- Finding elegant and efficient solutions.

Style

4

• Naming Conventions
- Use ALL_CAPS for constants

- Use camelCase for all other identifiers

• Layout Rules

- Use blank lines and indentation to enhance readability

- Be consistent with the use of opening and closing braces

Clarity

5

• Order of presentation
- Very important in UML and code of larger programs

• Selection of Identifier Names
- Use dictionary words that are descriptive of its purpose

- Use nouns for variable names and verbs for function names

Clarity

6

• Order of presentation

ClassName(
+((a*ribute1(
#(a*ribute2(
3(a*ribute3(

+((opera7on1(
#(opera7on2(
3(opera7on3(

class!ClassName!
{!
!!!!!public:*
!!!!!!!!!a*ribute1!
!!!!!!!!!opera3on1!
!!**protected:*
!!!!!!!!!a*ribute2!
!!!!!!!!!opera3on2!
!!!!*private:*
!!!!!!!!!a*ribute3!
!!!!!!!!!opera3on3!
};!
!!!!!!

Clarity

7

• Commenting practices
- Each program must start with a comment containing the

name(s) and student numbers of the author(s), the date of
last edit as well as the purpose of the program.

- Add comments to enhance understanding

- Avoid redundancy and duplication of what is already clear
in the code.

Flexibility

8

• Avoid the use of magic numbers
- A magic number is a numeric constant embedded in code.

- Rather introduce a named constant.

• Apply OO principles and use design patterns
appropriately

- Will be dealt with later and in later modules.

Reliability

9

• Be conscious of the scope of every variable you
declare.

• Take compiler warnings seriously

• Know when and how to use the different control
structures

• Know when and how to use reference parameters
and pointers

Effectiveness

10

• Be conscious of the size of every variable you
declare.

• Avoid unnecessary code duplication by making use
of functions and loop structures.

• Be conscious of the cost of operations and the
order in which they are executed.

