
Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 1

COS 121 – Christoph Stallmann
1

• To iterate means to repeat.

• Implemented as:

• Recursion

• Loop structures: for and while loops

• A class that supports iterations is called

an iterator.

2

0 1 2 3 4 5 6

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 2

• Improve efficiency when accessing
subscripts sequentially.

• Easier interface to access elements.

• Different Iterators might access
elements differently.

• Separation of concerns:

• One class is responsible for storing
objects.

• Another class is responsible for
accessing them.

3

4

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 3

• Often abstract.

• Defines the interface for creating an

Iterator object.

5

• Implements the interface of the

Aggregate.

• Returns an object of the corresponding

Concrete Iterator.

6

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 4

• Often abstract.

• Defines an interface for accessing and

traversing elements.

7

• Implements the interface of the Iterator.

• Keeps track of the current position in

the traversal of the Concrete Aggregate.

8

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 5

• Initial state.

9

Collection

0 1 2 3 4 5

• Create an Iterator.

10

Collection

0 1 2 3 4 5

Iterator

createIterator()

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 6

• Starting at the first element.

11

Collection

0 1 2 3 4 5

first()

Iterator

• Starting at the first element.

12

Collection

0 1 2 3 4 5

next()

Iterator

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 7

• Starting at the first element.

13

Collection

0 1 2 3 4 5

next()

Iterator

• Starting at the first element.

14

Collection

0 1 2 3 4 5

next()

Iterator

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 8

• Starting at the first element.

15

Collection

0 1 2 3 4 5

next()

Iterator

• Starting at the first element.

16

Collection

0 1 2 3 4 5

next()

Iterator

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 9

• STL in C++ has the following iterators:

• Bidirectional Iterator

• Forward Iterator

• Input Iterator

• Output Iterator

• Random Access Iterator

• Vectors, lists, stacks and maps in C++

make use of iterators.

17

vector<int> myvector;

for(int i = 0; i < 5; ++i)

 myvector.push_back(i);

vector<int>::iterator myiterator;

for(myiterator = myvector.begin();

 myiterator < myvector.end();

 ++ myiterator)

 cout << *myiterator;

18

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 10

• STL in C++ has the following iterators:

• Bidirectional Iterator

• Forward Iterator

• Input Iterator

• Output Iterator

• Random Access Iterator

• Vectors in C++ make use of iterators.

19

• Implemented in various places:

• QVector

• QList

• QSet

• QMap

• QStringList

• QLinkList

• Many more …

20

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 11

• http://youtu.be/nuS591k75NY

21

22

WeaponList

0 1 2 3 4 5 6

http://youtu.be/nuS591k75NY
http://youtu.be/nuS591k75NY

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 12

23

24

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 13

25

• Iterators simplify the aggregate

interface.

• Iterators contribute to the flexibility of

your code.

• Easy to change the iterator if the

container changes.

• Iterators contribute to the reuse of your

code.

• Same iterator for different containers.

• Easy to iterate differently through the

same structure.

• Execute simultaneous yet independent

iterations.
26

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 14

• Complicated to synchronize an

Aggregate with its Iterator.

• Depending on the implementations,

iterators might be slower than direct

subscript access.

27

• The Iterator implementation might differ

considerably:

• Some might be optimized for

sequential access.

• Other might be optimized for random

access.

28

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 15

• Copy the Aggregate

• Storing the state

• Pointer to the Aggregate

• Pimpl principle.

29

• Make a copy of the Aggregate inside the

Iterator.

• Most robust solution.

• Execution-wise the most efficient.

• Memory-wise the least efficient.

• Doesn’t reflect changes to the

Aggregate.

30

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 16

• Create an object storing the state of the

Aggregate inside the Iterator.

• Storing a Memento.

• Robust solution.

• More efficient than copying.

• Difficult to implement.

• Doesn’t reflect changes to the

Aggregate.

31

• Keep a pointer to the Aggregate inside

the Iterator and use call backs to access

the Aggregate.

• Not that robust.

• Memory-wise very efficient.

• Prone to synchronization errors if the

Iterator wasn’t implemented properly.

• Compromises encapsulation.

• Reflects changes to the Aggregate.

32

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 17

• The Pimpl Princple.

• Memory-wise most efficient.

• Execution-wise most efficient.

• Beyond the scope of the module.

33

• The Iterator can have additional

functionality, such as:

• Remove

• Previous

• Last

• SkipTo

34

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 18

• External Iterators:

• The client calls the functions on the

Iterator.

• Internal Iterators:

• Iterators controls itself.

• Less flexible.

35

• Factory Method

• Both use a subclass to decide which

object to create.

• Memento

• An Iterator can use a Memento to

capture the state of the Aggregate.

• Adapter

• Both provide an interface through

which operations are performed.

• Composite

• Recursive structures such as a

Composite usually need iterators to

traverse sequentially.

36

Department of Computer Science - COS 121 September 2012

Christoph Stallmann - University of Pretoria 19

COS 121 – Christoph Stallmann

37

