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• To iterate means to repeat. 

• Implemented as: 

• Recursion 

• Loop structures: for and while loops 

• A class that supports iterations is called 

an iterator. 
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• Improve efficiency when accessing 
subscripts sequentially. 

 

• Easier interface to access elements. 

 

• Different Iterators might access 
elements differently. 

 

• Separation of concerns: 

• One class is responsible for storing 
objects. 

• Another class is responsible for 
accessing them. 
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• Often abstract. 

 

• Defines the interface for creating an 

Iterator object. 
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• Implements the interface of the 

Aggregate. 

 

• Returns an object of the corresponding 

Concrete Iterator. 
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• Often abstract. 

 

• Defines an interface for accessing and 

traversing elements. 
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• Implements the interface of the Iterator. 

 

• Keeps track of the current position in 

the traversal of the Concrete Aggregate. 
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• Initial state. 
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• Starting at the first element. 
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• Starting at the first element. 
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• Starting at the first element. 
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• Starting at the first element. 
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• Starting at the first element. 
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• STL in C++ has the following iterators: 

• Bidirectional Iterator 

• Forward Iterator 

• Input Iterator 

• Output Iterator 

• Random Access Iterator 

 

• Vectors, lists, stacks and maps in C++ 

make use of iterators. 
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vector<int> myvector; 

for(int i = 0; i < 5; ++i) 

     myvector.push_back(i); 

 

vector<int>::iterator myiterator; 

for(    myiterator = myvector.begin(); 

          myiterator < myvector.end(); 

          ++ myiterator) 

     cout << *myiterator; 
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• STL in C++ has the following iterators: 

• Bidirectional Iterator 

• Forward Iterator 

• Input Iterator 

• Output Iterator 

• Random Access Iterator 

 

• Vectors in C++ make use of iterators. 
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• Implemented in various places: 

• QVector 

• QList 

• QSet 

• QMap 

• QStringList 

• QLinkList 

• Many more … 
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• http://youtu.be/nuS591k75NY 
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• Iterators simplify the aggregate 

interface. 

• Iterators contribute to the flexibility of 

your code. 

• Easy to change the iterator if the 

container changes. 

• Iterators contribute to the reuse of your 

code. 

• Same iterator for different containers. 

• Easy to iterate differently through the 

same structure. 

• Execute simultaneous yet independent 

iterations. 
26 
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• Complicated to synchronize an 

Aggregate with its Iterator. 

 

• Depending on the implementations, 

iterators might be slower than direct 

subscript access. 
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• The Iterator implementation might differ 

considerably: 

• Some might be optimized for 

sequential access. 

• Other might be optimized for random 

access. 
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• Copy the Aggregate 

• Storing the state 

• Pointer to the Aggregate 

• Pimpl principle. 
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• Make a copy of the Aggregate inside the 

Iterator. 

• Most robust solution. 

• Execution-wise the most efficient. 

• Memory-wise the least efficient. 

• Doesn’t reflect changes to the 

Aggregate. 
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• Create an object storing the state of the 

Aggregate inside the Iterator.  

• Storing a Memento. 

• Robust solution. 

• More efficient than copying. 

• Difficult to implement. 

• Doesn’t reflect changes to the 

Aggregate. 
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• Keep a pointer to the Aggregate inside 

the Iterator and use call backs to access 

the Aggregate. 

• Not that robust. 

• Memory-wise very efficient. 

• Prone to synchronization errors if the 

Iterator wasn’t implemented properly. 

• Compromises encapsulation. 

• Reflects changes to the Aggregate. 
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• The Pimpl Princple. 

• Memory-wise most efficient. 

• Execution-wise most efficient. 

• Beyond the scope of the module. 
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• The Iterator can have additional 

functionality, such as: 

• Remove 

• Previous 

• Last 

• SkipTo 
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• External Iterators: 

• The client calls the functions on the 

Iterator. 

 

• Internal Iterators: 

• Iterators controls itself. 

• Less flexible. 
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• Factory Method 

• Both use a subclass to decide which 

object to create. 

• Memento 

• An Iterator can use a Memento to 

capture the state of the Aggregate. 

• Adapter 

• Both provide an interface through 

which operations are performed. 

• Composite 

• Recursive structures such as a 

Composite usually need iterators to 

traverse sequentially. 
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