Makefiles

The Compilation Process

Compiler stage
Assembler stage

Linker stage

g++ -0 HelloWorld HelloWorld.cpp

./HelloWorld

Compile Commands

Compiling multiple source files
g++ Bike.cpp Tricycle.cpp

Compiling without linking
g++ —-c Bike.cpp Tricycle.cpp

Linking compiled code

g++ Bike.o Tricycle.o

g++ Bike.o Tricycle.o -o GoRide

‘ Selective Compilation

g++ —-c Bike.cpp
g++ Bike.o Tricycle.o main.o -o GoRide

g++ —-c Tricycle.cpp maln.cpp
~gt++ Bike.o Tricycle.o main.o -o GoRide

‘ Compiler Flags

Flag Usage
-0 To specify the output filename.
-W Disable all warning messages.
-Wall Enable most compiler warnings.
-Werror Treat compiler warnings as errors.
-pedantic Issue all the warnings demanded by ISO C++

-pedantic-errors

Like -pedantic, except that errors are
P ,
produced rather than warnings.

-static

On systems that support dynamic linking,
this prevents dynamic linking with the
shared libraries.

‘ Compiler Flags

Flag | Usage

-0 | specify the output filename

-Wall | turns on all compiler warnings

-0 turns on debugging. This makes your code ready to run
under gdb.

-¢ | compiles it down to an object file, known as a ".o". You can
link together multiple object files into an executable. This
is used in multiple file projects to reduce compile time.

-O | turns on optimization, you may also specity levels (-O2).

-E | outputs the preproccessor output to the screen (stdout).

-MM | outputs the Makefile dependancies for the cpp file(s) listed.

‘ Sample maketile entry

Source
Target

elloWorld.cpp
f ~sta |c-HeIIoWorId.cpp--o-m

\

Tab Command

‘ Sample maketile

Target Sources

Bike.o Tricycle .o@
<:::E§E:§EEEZO Tricycle.o main.o —oiEEEi?E::::>

Bike.o: Bike.cpp Bike.h Wheel.h Command
g++ -c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h
g++ —-c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h
g++ —-C main.cpp

Order when linking

.0 files has to be listed in the correct order
The make utility execute from left to right.

Everything that a specific .o file are
dependant on should be listed to the left of it.
o All its parents

o All classes of which it has instances

‘ Custom command

clean:
rm -f *x.o0 *~

make clean

‘ Comments

Linking the object code of the complete system.:
GoRide: Bike.o Tricycle.o main.o
g++ Bike.o Tricycle.o main.o -o GoRide

Commands for partial compilation of c++ source files:
Bike.o: Bike.cpp Bike.h Wheel.h
g++ —-c Bike.cpp

Tricycle.o: Tricycle.cpp Tricycle.h Wheel.h
g++ —-c Tricyle.cpp

main.o: main.cpp Bike.h Tricycle.h
g++ —-Cc main.cpp
Clustom command:
clean:
rm -f GoRide *.o *x7 # deleting executable, .0’s and backups

Macro’s

CC = g++

CFLAGS = -Wall

TARGET = GoRide

OBJECTS = Bike.o Tricycle.o main.o

Linking all the object code:
all: $(OBJECTS)
$(CC) $(FLAGS) $(OBJECTS) -o $(TARGET)

‘ Spectal macro’s

CcC Contains the current compiler. Defaults to cc

CFLAGS Special options which are added to the built-in compile rule
$@ Full name of the current target.

$? A list of files for current dependency which are out-of-date.

$< The source file of the current (single) dependency:.

‘ Rules

h.0: Th.CPP
g++ $< -Wall -o $0

Common errors

Failing to put a TAB at the beginning of
commands. This causes the commands not

to run.
To put a TAB at the beginning of a blank line.

This causes the make utility to complain that
there is a \blank” command.

Advanced common errors

Using \ for continuation but not having the \
as the very last character of the line.

Not including all dependencies.
Listing object files in the wrong order.

Challenges

Write a custom rule to tar the .cpp and .h
files.

Write a custom command that will print

all .

buli

Ma
ma

cpp files that have changed since the last
d.

kKefiles can also include files. Write a

Kefile that use a rule to generate the

dependency list of the .cpp files in the current
folder and include it automatically in the
makfile.

