State

Behavioural Pattern

Protected Variations (PV)

A design principle aimed at containing
(to keep under proper control) code changes

after a system is implemented
Larman (2004) — Applying UML and Patters

PV is usually achieved by adding a level of
indirection, an interface, and using
polymorphism to deal with the identified
points of predicted variation.

State

To change the behaviour of an object
dynamically. It appears as if the object
changes to be an object of a different class
based on some internal state.

Problem solved by State

When an object is large and has many
different states dictating differing behaviours
the code can become hard to maintain.

Method applied by State to solve the
problem

Avoid complex conditional statements
appearing in various places by encapsulating
them in classes (i.e. employ Polymorphism)

‘ Structure

Context

Request() @
|
|

state

state->Handle()

State

Handle(}
ConcreteStateA ConcreteStateB
Handle() Handle()

Participants

Context
o Delegate action to correct concrete state.

State

o Interface to define the functions that are
dependant on state.

Concrete State
o Implement the state specific functions.

Example

] state
TCPConnection s
Open() O--=--- !
Close() I
Acknowledge() :

|
:
|
I
ol

state-=0pen{)

TCPState

Cpeny;

Closey)

Acknowledgef)
TCPEstablished TCPListen TCPClosed
Opend) Chpeni() Open()
Closa() Closel) Close|)
Acknowladned) Acknowledgea() Acknowiedge()

‘ Example

DrawingController

MousePressed()
ProcessKeyboard()
Initialize()

currentTool
Ko

Tool

HandleMousePressy|)
HandleMouseRelease()
HandleCharacter()
GetCursor()

Activate{)

A

CreationTool

SelectionTool

TextTool

‘ Example

Account

double money;
AccountState* state;

+ Account(double);

+void deposit(double) ;
+ double getinterest(;
+void freeze();

+void unfreeze();
+void makeGold();
+void undoGold();
+void print();

+ double withdraw(double) ;

AccountState

¥

double limit;

double interest;

“[+ virtual bool withdraw(double) = 0;

+virtual double getinterest() {return interest;};
+ virtual string description() = 0;

FiN

CreditState

OverdrawnState

GoldState

FrozenState

Related Patters

State, Strategy and Builder has the same

structure
Because all of them apply PV

Sate objects are often Singletons

10

‘ Strategy and State

Context <;,~s trategy e Strategy

Contextinterfacel() Algorithminterface()

A

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

Algorithminterface() Algorithminterface() Algorithminterface()

Context Cf tate - State
Q Handle(}
:
|
I
|

A

ConcreteStateA ConcreteStateB

Request()

state->Handle()

Handle() Handle()

‘ Builder and State

Director builder Builder
Construct{) 0 BuildPart()
|
I
|
:
for ali objects in structure {
} DANCIOF=>EUSGr k) ConcreteBuilder [------- -| Product
BuildPart()
GetResult()
state
Context » State
Request() @ Handle{)
‘ A
1
|
l —————
state->Handle()
ConcreteStateA ConcreteStateB
Handle() Handle()

12

Ditterent ways to change state

Context apply fixed criteria
o Hard-coded in Context

Context apply variable criteria

o Context use a template method with variability
implemented in the Concrete States

Concrete States apply criteria

o The application of conditions observed while
executing other methods in a concrete state may
trigger the change of state.

13

Lecture Example

A system implementing a Boss class that
iImplements the following actions:
o helpMe

displays different strings depending on mood

o directMe

displays different strings depending on mood
calls changeMood

o changeMood
alternates between the moods

o getMood

returns a string identifying the mood

Inspired by an example by Vince Huston (http://www.vincehuston.org/dp/)

14

To add another mood to the system

one has to:
= Define the new mood

= Redefine changeMood()

= Redefine getMood()
= Redefine helpMe()
= Redefine directMe()

Boss

-mood : int

+ Boss()

+ helpMe()

+ directMe()

+ getMood() : char*
- changeMood()

15

‘ Retactored Class Diagram

Visual Paradigm Standard EditioniUniversity of Pretoria)

16

To Retfactor the class to apply the

State Pattern:

Define an Abstract State with virtual handlers for
all requests

Change the original variable that encapsulated
the state to a pointer to this Abstract State

Define Concrete states and implement the
handlers in the concrete states

Redefine the requests to call the handlers

17

To add a mood after refactoring

Define a new mood as an extension of the
Abstract State (Same as other moods)

Implement the concrete handlers

18

Summary

Before refactoring

o Changes are scattered and can give rise to
complex logical structures (large switch or deeply
nested if).

Refactoring
o Much more difficult that making the changes

After refactoring
o Changes are centralised
o Logic is handled my means of polymorphism

19

Conclusion

It is hard work to implement the pattern but it
pays off when the system needs to be
maintained.

20

