
1 

State  

Behavioural Pattern 



Protected Variations (PV) 

n  A design principle aimed at containing 
(to keep under proper control) code changes 
after a system is implemented 

§  Larman (2004) – Applying UML and Patters 
 

n  PV is usually achieved by adding a level of 
indirection, an interface, and using 
polymorphism to deal with the identified 
points of predicted variation. 

2 



3 

State 

n  To change the behaviour of an object 
dynamically. It appears as if the object 
changes to be an object of a different class 
based on some internal state. 



Problem solved by State 
n  When an object is large and has many 

different states dictating differing behaviours 
the code can become hard to maintain. 

4 

Method applied by State to solve the 
problem 
n  Avoid complex conditional statements 

appearing in various places by encapsulating 
them in classes (i.e. employ Polymorphism) 



5 

Structure 



6 

Participants 

n  Context  
q  Delegate action to correct concrete state. 

n  State 
q  Interface to define the functions that are 

dependant on state. 

n  Concrete State 
q  Implement the state specific functions. 



7 

Example 



Example 

8 



Example 

9 



Related Patters 

n  State, Strategy and Builder has the same 
structure 

n  Because all of them apply PV 
 

n  Sate objects are often Singletons 

10 



11 

Strategy and State 



12 

Builder and State 



Different ways to change state 

n  Context apply fixed criteria 
q  Hard-coded in Context 

n  Context apply variable criteria 
q   Context use a template method with variability 

implemented in the Concrete States  
n  Concrete States apply criteria 

q  The application of conditions observed while 
executing other methods in a concrete state may 
trigger the change of state.  

13 



Lecture Example 
n  A system implementing a Boss class that 

implements the following actions: 
q  helpMe  

n  displays different strings depending on mood 

q  directMe 
n  displays different strings depending on mood 
n  calls changeMood  

q  changeMood 
n  alternates between the moods 

q  getMood  
n  returns a string identifying the mood 

14 

Inspired by an example by Vince Huston (http://www.vincehuston.org/dp/) 



To add another mood to the system 
one has to: 
n  Define the new mood 
n  Redefine changeMood() 
n  Redefine getMood() 
n  Redefine helpMe() 
n  Redefine directMe() 

15 



Refactored Class Diagram 

16 



To Refactor the class to apply the 
State Pattern: 
n  Define an Abstract State with virtual handlers for 

all requests 

n  Change the original variable that encapsulated 
the state to a pointer to this Abstract State 

n  Define Concrete states and implement the 
handlers in the concrete states 

n  Redefine the requests to call the handlers 

17 



To add a mood after refactoring 

n  Define a new mood as an extension of the 
Abstract State (Same as other moods) 

n  Implement the concrete handlers 

18 



Summary 

n  Before refactoring 
q  Changes are scattered and can give rise to 

complex logical structures (large switch or deeply 
nested if). 

n  Refactoring 
q  Much more difficult that making the changes 

n  After refactoring 
q  Changes are centralised 
q  Logic is handled my means of polymorphism 

19 



Conclusion 

n  It is hard work to implement the pattern but it 
pays off when the system needs to be 
maintained. 

20 


