Strategy Pattern

Behavioural Pattern

Intent

To implement different algorithms to solve the
same problem and to be able to swap
between these algorithms at runtime.

To consolidate scattered conditional
behaviour by applying polymorphism.

To control coupling

‘ Controlling coupling

Strategy Pattern

Contexl

Contextinterface()

strate
i lJ Strategy
Algorithminterfacef)
A
ConcrateStrategyA ConcreteStrategyB ConcreteStrateqyC

Algonthminterfacsl)

Algorithminarface()

Algorthminterface)

Participants

Context
o The class that uses different strategies

Strategy

o The common interface for different strategies

Concrete Strategy
o Implementation of a strategy

‘ Example

= A Strategy include a decision structure to decide on
what strategy is to be used.

TransportationToAirport IC j Strategies(Options)

JAN
\

|

Personal Car Taxi City Bus

‘ Example

/’
7
7/

UTSalesTax

Context

AbstractSalesTax
« interface » <
determineTax()
N A %
d |
| AN
I \
| N\
| A \
MASalesTax NHSalesTax

Determine what
state where we are
calculating the tax.

Ways of Coupling between the
Context and the Strategy Interface

Pass the data that has to be operated on to the
algorithm via a parameter

Pass a pointer the data that has to be operated
on to the algorithm via a parameter

Pass a pointer to the Context to the algorithm
and allow the algorithm to manipulate the data
directly.

Strategy store a permanent reference to the
Context and manipulate the data directly.

Disadvantages of Strategy

High coupling between Strategy and Context

o Interface must cater for all that all strategies need
and therefore, is not small.

o Not all strategies use the whole interface resulting
In parameters initialised an never used

When strategies are shared between
different clients at the same time there is a
risk of unwanted side-effects.

Factory Method vs Strategy

Both use Polymorphism to implement
variation

o Factory Method — to create the correct object
o Strategy- to execute the correct algorithm

Template Method vs Strategy

Template Method manipulates generic objects while
Strategy manipulates defined objects generically.
Method of varying behaviour:

o Template: Inheritance; - changes part of algorithm

o Strategy: Delegation; - select a whole algorithm
Examples:

o Template Method: Quiksort Persons/Numbers/etc.
o Strategy: Quicksort/merge-sort/etc. numbers

Strategy vs State

Same structure and same techniques to
achieve their respective goals

Different intents

o Strategy is about applying different algorithms to
achieve a fixed outcome

o State is about achieving different outcomes based
on the current state.

Flyweight and Strategy

Strategy objects often makes good
Flyweights

Lecture Example

An application that decide at runtime
what strategy should be used for
calculating xV¥.

‘ UML Class Diagram

Client

<

Version

-implementation : PowCalculator*

+ Version()
+ upGrade()

+ downGrade(p : double)
+ calculate(: double, : double)

PowCalculator

+ calculate(: double, : double)
+ isinteger(: double) : bool

QuickAndDirty

StepByStep

- calculate(b : double, p : double) | |- calculate(b : double, p : double)

Participants

o Context = Version
Uses the different strategies

o Strategy = PowCalculator
Interface to the concrete stratgies

o Concrete Strategies: QuickAndDirty, StepByStep
Exponentiation with pow -function
Exponentiation with repeated multiplication

