
Strategy Pattern

Behavioural Pattern

Intent
n  To implement different algorithms to solve the

same problem and to be able to swap
between these algorithms at runtime.

n  To consolidate scattered conditional
behaviour by applying polymorphism.

n  To control coupling

Controlling coupling
Client Class

Class 1

method 1

Class 2

method 2

Class n

method n

Client Class Interface Class

virtual method

Derived Class 1

concrete method 1

Derived Class 2

concrete method 2

Derived Class n

concrete method n

Strategy Pattern

Participants

n  Context
q  The class that uses different strategies

n  Strategy
q  The common interface for different strategies

n  Concrete Strategy
q  Implementation of a strategy

Example
n  A Strategy include a decision structure to decide on

what strategy is to be used.

Example

Ways of Coupling between the
Context and the Strategy Interface

n  Pass the data that has to be operated on to the

algorithm via a parameter
n  Pass a pointer the data that has to be operated

on to the algorithm via a parameter
n  Pass a pointer to the Context to the algorithm

and allow the algorithm to manipulate the data
directly.

n  Strategy store a permanent reference to the
Context and manipulate the data directly.

Disadvantages of Strategy

n  High coupling between Strategy and Context
q  Interface must cater for all that all strategies need

and therefore, is not small.
q  Not all strategies use the whole interface resulting

in parameters initialised an never used

n  When strategies are shared between
different clients at the same time there is a
risk of unwanted side-effects.

Factory Method vs Strategy

n  Both use Polymorphism to implement
variation
q  Factory Method – to create the correct object
q  Strategy- to execute the correct algorithm

Template Method vs Strategy

n  Template Method manipulates generic objects while
Strategy manipulates defined objects generically.

n  Method of varying behaviour:
q  Template: Inheritance; - changes part of algorithm
q  Strategy: Delegation; - select a whole algorithm

n  Examples:
q  Template Method: Quiksort Persons/Numbers/etc.
q  Strategy: Quicksort/merge-sort/etc. numbers

Strategy vs State

n  Same structure and same techniques to
achieve their respective goals

n  Different intents
q  Strategy is about applying different algorithms to

achieve a fixed outcome
q  State is about achieving different outcomes based

on the current state.

Flyweight and Strategy

n  Strategy objects often makes good
Flyweights

Lecture Example

An application that decide at runtime
what strategy should be used for
calculating xy.

UML Class Diagram

Participants

q  Context = Version
n  Uses the different strategies

q  Strategy = PowCalculator
n  Interface to the concrete stratgies

q  Concrete Strategies: QuickAndDirty, StepByStep
n  Exponentiation with pow -function
n  Exponentiation with repeated multiplication

