
Department of Computer Science
COS121 Lecture Notes

Chapter 15- Iterator Design Pattern
Copyright c©2015 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

15.1 Introduction . 2

15.2 Iterator Design Pattern . 2
15.2.1 Identification . 2
15.2.2 Problem . 2
15.2.3 Structure . 3
15.2.4 Participants . 3

15.3 Cohesion . 4

15.4 Iterator Pattern Explained . 4
15.4.1 Design . 4
15.4.2 Improvements achieved . 5
15.4.3 Disadvantage . 5
15.4.4 Real world example . 6
15.4.5 Related Patterns . 6

15.5 Implementation Issues . 7
15.5.1 Accessing the elements of the aggregate 7
15.5.2 Additional functionality . 7
15.5.3 Internal and External iterators . 8
15.5.4 Allocation on the heap or on the stack 8
15.5.5 Using C++ STL Iterators . 8

15.6 Example . 11

15.7 Exercises . 12

References . 13

1

15.1 Introduction

To iterate means to repeat. In software it may be implemented using recursion or loop
structures such as for-loops and while-loops. A class that provides the functionality to
support iteration is called an iterator.

The term aggregate is used to refer to a collection of objects. In software a collection may
be implemented in an array, a vector, a binary tree, or any other data structure of objects.
The iterator pattern is prescriptive about how aggregates and their iterators should be
implemented.

Two general principles are applied in the iterator design pattern. The first is a prominent
principle of good design namely separation of concerns. The other is a fundamental
principle of generic programming namely decoupling of data and operations. The iterator
design pattern suggests that the functionality to traverse an aggregate should be moved to
an iterator while functionality to maintain the aggregate remain the responsibility of the
aggregate itself. This way the principle of separation of concerns is applied because the
functionality concerned with the maintenance of aggregates is separated form functionality
concerned with traversal of the aggregates. At the same time the operation to traverse is
decoupled from the data structures which are traversed, leading to the creation of a more
generic traversal algorithm.

In this lecture we discuss how separation of concerns leads to better cohesion before we
proceed to explain the design and implementation of the iterator design pattern.

15.2 Iterator Design Pattern

15.2.1 Identification

Name Classification Strategy
Iterator Behavioural Delegation
Intent
Provide a way to access the elements of an aggregate object sequentially without
exposing its underlaying representation ([3]:257)

15.2.2 Problem

A system has wildly different data structures that are often traversed for similar results.
Consequently traversal code is duplicated but with minor differences because each aggre-
gate has its own way to provide the functionality to access and traverse its objects. To
eliminate such duplication, we need to abstract the traversal of these data structures so
that algorithms can be defined that are capable of interfacing with them transparently [4].

2

15.2.3 Structure

Figure 1: The structure of the Iterator Design Pattern

15.2.4 Participants

Iterator

• Defines an interface for accessing and traversing elements.

Concrete Iterator

• Implements the Iterator interface

• Keeps track of the current position in the traversal of the aggregate

Aggregate

• Defines an interface for creating an Iterator object

Concrete Aggregate

• Implements the Iterator creation Interface to return an instance of the proper
concrete iterator.

3

15.3 Cohesion

When designing a system, it is important to keep its maintenance in mind. Making
changes should be easy. One of the design principles that can be applied to avoid the
need to change a class, is separation of concerns. This means that functionality concerning
different aspects should be separated from one another by implementing them in different
classes. Thus, the functionality provided by each class in the design should be related to
one aspect only. If a single class implements various aspects of functionality, changes in
any one of these aspects will result in having to change the class. On the other hand,
if a class implements only one aspect of functionality, it will change if and only if that
specific aspect changes. Note that the amount of change does not change, only the chance
of having to change each class is reduced, meaning that changes are isolated to certain
classes.

The term cohesion is used to refer to the internal consistency within parts of the design.
In object-oriented design the level of cohesion of a system is determined by the level
of cohesion of the classes that constitutes the system. A metric to measure the lack of
cohesion in methods (LCOM) was proposed by [1]. It is recognised as the most used
metric when trying to measure the goodness of a class written in some object-oriented
language [5]. When calculating the LCOM of a class, two methods are considered to have
a lack of cohesiveness when they operate on disjunct sets of attributes in a class. While it
is valid to state that methods are not cohesive when they operate on different attributes,
it is not conclusive that they are cohesive if they operate on the same same attributes.
Consequently the presence of cohesiveness is much harder to observe than the absence
thereof.

We say a class has high cohesion when its methods are related. These methods should be
related not only by operating on the same attributes of a class, but more importantly they
must be related in terms of the functions they perform. If methods perform functions
that are related to different responsibilities, they should be separated by including them
in different classes. However, separating responsibility in design is one of the most difficult
things to do. Sometimes non-cohesiveness of a class is only realised when the class tends
to change more often or in more than one way as the system grows.

Separation of concerns will increase overall cohesion of a system and may reduce the
number of classes that has to change when needed. However, it will most likely increase the
number of classes in the system. This, in turn will increase complexity as well as coupling
between the classes. Finding the best design is illusive. When improving one thing one
tends to worsen another! Through experience one learn how to find good solutions that
has low coupling without compromising too much in terms of high cohesion.

15.4 Iterator Pattern Explained

15.4.1 Design

The Iterator design pattern applies separation of concerns specifically to aggregates. Usu-
ally aggregates have at least two functions. One being its maintenance, and the other its
traversal. Maintenance of aggregates includes methods to add and remove elements and
the like, while traversal of aggregates concerns only accessing the elements and knowing

4

an order in which they should be accessed. The iterator design pattern describe a design
that separates the mechanism to iterate through the aggregate from the other functions
an aggregate may have.

The Iterator design pattern moves the responsibility of traversing objects away from the
aggregate to another class called an iterator. The aggregate class, therefore, can have a
simpler interface and implementation because it needs only to cater for maintenance of
the aggregate and no longer for its traversal [2].

The iterator design pattern takes this good design a step further. Instead of just imple-
menting every aggregate in two classes (one for maintenance, and one for traversal), this
pattern is a design that provides a generic way to traverse the objects in aggregates that
is independent of the structure of the various aggregates. This is achieved by defining
two abstract interfaces – one for iteration and one for the rest of the functionality of ag-
gregates. This way the system is more flexible when either aggregates or their iterations
needs maintenance.

15.4.2 Improvements achieved

• Iterators simplify the aggregate interface. All the functionality related to access and
traversal is removed from the aggregate interface and placed in the iterator interface
resulting in a smaller and more cohesive aggregate.

• Iterators contribute to the flexibility of your code – if you change the underlying
container, it’s easy to change the associated iterator. Thus, the code using aggre-
gates becomes much easier to maintain. Most changes to the internal structure of
the aggregates it uses will have no impact on the code that uses the aggregate.

• Iterators contribute to the reusability of your code – algorithms that were written to
operate on a containers that use an iterator can easily be reused on other containers
provided that they use compatible iterators. Thus, the same code can be used to
traverse a variety of aggregate structures in the same application. This reduces
duplication of code in applications that manipulate multiple aggregates.

• It is easy to provide different ways to iterate through the same structure for example
traversing breadth first or depth first through a game tree or for example to have
an iterator that might provide access only to those elements that satisfy specific
constraints.

• It is possible to execute simultaneous yet independent iterations through the same
structure.

15.4.3 Disadvantage

A prominent disadvantage of the application of the iterator design pattern is that it
becomes complicated the synchronise an aggregate with its iterator. Because the aggregate
structure is completely independent of the iteration process, it is thus possible to apply
changes to the aggregate while an independent thread iterates through the structure.
Such situation is prone to error.

5

In the example in Section 15.6, VectorSteppingTool creates a copy of the state of the
aggregate. In this case the iterator can not malfunction even if the aggregate is changed
during the iteration process. However, the iteration will complete without reflecting the
changes. On the other hand LinkedListIterator operates directly on its aggregate. If
the LinkedList is changed, the iterator will reflect such changes immediately. However,
it is prone to error if not synchronised properly. For example, if the current item of the
iterator is deleted, the next call to next() will cause a segmentation fault. To prevent this
the implementation should either disallow the deletion of the current item in all iterations
(which might be difficult to implement), or update the current item in all iterations when
an item is deleted. To implement this, iterators need to be registered as observers of the
delete action – this is also not trivial.

15.4.4 Real world example

The programming use of a controller to select TV channels provide a practical example
of a filtering iterator. The TV set has its built in iterator that scan sequentially through
all frequencies. The controller can be programmed to have a specific frequency associ-
ated with numbered buttons. This corresponds with a skipTo() method that is often
implemented in iterators. After the channels have been associated with these numbers,
the next and previous buttons can be used to request the next channel, without knowing
its number. The use of these buttons correspond with the concept of a special iterator
that can be used to step through the channels.

15.4.5 Related Patterns

Factory Method
Both Iterator and Factory Method use a subclass to decide what object should be
created. In fact createIterator() is an example of a factory method.

Memento
The memento pattern is often used in conjunction with the iterator pattern. An
iterator can use a memento to capture the state of the aggregate. This memento is
stored inside the iterator to be used for traversing the aggregate.

Adapter
Both patterns provides an interface through which operations are performed. They
differ in the reason for providing this interface. The adapter do it because it would
be otherwise impossible while the iterator do it specifically to generalise iteration of
aggregates.

Composite
Recursive structures such as composites usually need iterators to traverse them
sequentially. Although recursive traversal might be very easy to implement with-
out extending the composite pattern, its is strongly advised to create a composite
iterator as discussed in Section 3.

6

15.5 Implementation Issues

15.5.1 Accessing the elements of the aggregate

Concrete iterators must be able to access the elements in the aggregate. The concrete
iterator may use this to implement the necessary access in one of the following ways:

• Make a copy of the aggregate inside the iterator. This is the most robust
solution. This is execution-wise the most efficient, but memory-wise the least effi-
cient. It also has the drawback of not being able to reflect on-the-fly changes to the
aggregate.

• Create an object storing the state of the aggregate inside the iterator.
This more or less boils down to storing a memento (See the memento design pattern)
of the aggregate inside its iterator. This is also a robust solution. This might be
more efficient than making a copy of the whole aggregate, but not always easy to
implement. It suffers the same drawback of not being able to reflect changes to the
aggregate that are made after the iterator was created.

• Keep a pointer to the aggregate inside the iterator and use a call back
mechanism to access the elements of the aggregate. This solution is memory
efficient, yet not as robust as the other methods. In this case the methods that
needs to be called should be public in the aggregate, or alternatively the iterator
can be declared a private/protected friend class of the aggregate and hence be
given access to its private/protected methods. This solution will be able to reflect
changes that are applied to the aggregate in real time, however it is prone to error if
synchronisation between the aggregate and the iterator is not implemented properly.
Such close coupling between the aggregate and the iteration also compromises the
encapsulation of the aggregate.

• Use the pimpl1 principle. This is the most efficient, both in terms of memory
and execution time. It is also robust. How this is done is beyond the scope of this
module.

15.5.2 Additional functionality

The pattern as given in Figure 1, defines a minimal interface to the Iterator class con-
taining only first(), next(), isDone() and currentItem(). When implementing the
iterator design pattern it might sometimes be handy to implement some of the following
additional methods in the interface:

• remove() – This method should remove the current item from the aggregate. It
provides the means to synchronise the maintenance of the aggregate with its iterator
by using a double dispatch2.

1pointer to implementation
2More detail on the double dispatch mechanism is discussed in L34 Visitor

7

• previous() – This method should step backwards instead of forwards to enable iter-
ations that can go in both directions. If this is supported one should also implement
to different methods for the prescribed isDone(). One for reaching the end while
moving forward, and one for reaching the beginning while moving backwards. This
is usually implemented using method names like hasNext() and hasPrevious().

• skipTo() – This method should position the iterator to an object matching specific
criteria. This operation may be useful for sorted or indexed collections to enable
the implementation of more complicated algorithms to operate on the aggregate.
Examples of algorithms that may need this operation are binary search and quick
sort.

15.5.3 Internal and External iterators

Iterators are classified as either internal or external depending on who calls the methods
that are declared for accessing and traversing the aggregate. If the client calls these
methods the iterator is said to be external. An internal iterator, on the other hand, is
controlled by the iterator itself. In this case the methods for traversing the aggregate can
be declared private to prevent the client from calling them. Internal iterators are less
flexible than external iterators because when it is the iterator that is stepping through
the aggregate, you have to tell the iterator what to do with the elements while stepping
through them. This means that you also need some way to pass an operation to the
iterator.

15.5.4 Allocation on the heap or on the stack

Iterator object may be allocated dynamically on the heap. This allows for the creation
of polymorphic iterators. In this case the client is responsible for deleting them. This is
error-prone, because it’s easy to forget to free a heap-allocated iterator object when you’re
finished with it. Hence they should be used only when there’s a need for polymorphism.
A more robust solution would be to allocate concrete iterators on the stack.

An alternative that provides the flexibility offered by heap allocation as well is the stability
achieved through stack allocation offered by [3] is to apply the proxy design pattern to
implement a stack-allocated proxy as a stand-in for the real iterator. The proxy can delete
the iterator in its destructor. Thus when the proxy goes out of scope, the real iterator
will get deallocated along with it. The proxy ensures proper cleanup, even in the face of
exceptions.

15.5.5 Using C++ STL Iterators

The application of the iterator design pattern was taken seriously by the designers of the
C++ language. Standard iterators are implemented for the containers in the C++ STL,
such as vector<>, list<>, stack<> and map<>. When using STL containers it is
advisable to use the provided iterators instead of a counter to traverse such container to
gain the benefits of using the iterator design pattern mentioned in Section 15.4.2. They
may also be able provide a way to access the data in an STL container that don’t have
obvious means of accessing all of the data (for instance, maps).

8

When one use one of these containers, a variable of the container type is declared by
including the type of the objects as a template parameter. For example use the following
syntax to declare a vector of integers called myVector:

vector<int> myVector;

To declare an iterator appropriate for a particular STL template class, you use the fol-
lowing syntax

std::class name<template parameters>::iterator name

where name is the name of the iterator variable you wish to create and the class name
is the name of the STL container you are using, and the template parameters are the
parameters to the template used to declare objects that will work with this iterator. Note
that because the STL classes are part of the std namespace, you will need to either prefix
every container class type with std::, or include using namespace std; at the top of
your program. For example you can create an iterator for the vector myVector that was
declared in the above mentioned example as follows:

std::vector<int>::iterator myIterator;

The two loops in the following code fragment are functionally equivalent. The first uses
an integer counter to iterate through the vector that was declared in the above mentioned
example, while the second uses the iterator that is declared here:

for (int myCounter = 0 ;
myCounter< myVector . s i z e () ; myCounter++)
cout << myVector [myCounter] << ’\ t ’ ;

for (myIterator = myVector . begin () ;
myIterator < myVector . end () ; myIterator++)
cout << ∗myIterator<< ’\ t ’ ;

Note how the elements of the vector are accessed by using the operator[] in the first loop,
while they are accessed by dereferencing the iterator in the second loop. To move from
one element to the next, the increment operator, ++, is used in both cases. Iterators
overload all operators. One can use the standard arithmetic shortcuts such as --, +=

and -=, and also use !=, ==, <, >, <=, and >= to compare iterator positions within the
container.

The following are some pitfalls to watch out for when using STL iterators:

• Iterators do not provide bounds checking; it is possible to overstep the bounds of a
container, resulting in segmentation faults

• Different containers support different iterators, so it is not always possible to change
the underlying container type without making changes to your code

• Iterators can be invalidated if the underlying container (the container being iterated
over) is changed significantly

9

F
ig

u
re

2:
C

la
ss

D
ia

gr
am

of
a

sy
st

em
il
lu

st
ra

ti
n
g

th
e

im
p
le

m
en

ta
ti

on
of

th
e

it
er

at
or

d
es

ig
n

p
at

te
rn

10

15.6 Example

Figure 15.5.5 is a class diagram of an application that implements the iterator design
pattern. It implements two data structures and their respective iterators. The main
program uses the same code to manipulate any one of these data structures. It also shows
how two independent iterators can be used to traverse the same structure at the same
time. The two data structures are a vector and a singly linked list.

Participant Entity in application
Iterator SteppingTool
Concrete Iterators VectorSteppingTool, LinkedListSteppingTool
Aggregate Collection
Concrete Aggregates VectorOfDoubles, LinkedList
createIterator() :Iterator* createSteppingTool():SteppingTool*
first(), next(), isDone(), currentItem() first(), next(), hasNext():bool, current():double
Client main()

Iterator

• The SteppingTool class acts as the iterator interface.

• It defines an interface for accessing and traversing elements exactly as pre-
scribed by the pattern.

Concrete Iterator

• The concrete iterators that are implemented are VectorSteppingTool and
LinkedListSteppingTool.

• Each concrete iterator has an instance variable to enable it to access the ele-
ments of its corresponding aggregate. In the case of the VectorSteppingTool

the whole vector is duplicated3. In the case of LinkedListSteppingTool it
only needs a pointer to its first element, because the rest of the list can be
accessed by following the links in its items.

• Each concrete iterator has an instance variable to enable it to refer to the
current item during traversal. In the case of the VectorSteppingTool it is
an integer holding the index value of the current position. In the case of
LinkedListSteppingTool it is a pointer to the current node in the linked list.

• Each concrete iterator implements the methods defined in the SteppingTool

interface.

Aggregate

• The Collection class acts as the aggregate interface.

• It defines the createSteppingTool() method that ensures that an iterator
can be created for each concrete aggregate as prescribed by the pattern.

3It might have been a better idea to keep only a pointer to the original vector. This way less memory
will be used and dynamic changes to the vector can be supported

11

• It also defines methods to be able to maintain concrete objects of classed de-
rived from this interface. It supports only one insertion and a default deletion
of elements, as well as a means to determine if the collection is empty.

Concrete Aggregate

• The concrete aggregates are VectorOfDoubles and LinkedList.

• Each concrete aggregate implements a default constructor and destructor.

• Each concrete aggregate implements the creation of its specific iterator as pre-
scribed by the pattern. In the case of the VectorOfDoubles the vector is
passed as parameter to the constructor of VectorSteppingTool which in turn
makes a copy of it. In the case of LinkedList a pointer to the head of the
list is passed to the constructor of LinkedListSteppingTool. Note that both
these cases do not pass a pointer to itself to the constructor of its iterator as
suggested in the pattern definition. Instead the pass only the data needed by
the iterator to be able to operate.

• VectorOfDoubles implements the other methods defined in the Collection

interface to maintain the collection simply by delegating the actions to the
appropriate methods of the <vector> class.

• LinkedList implements the other methods defined in the Collection interface
to maintain the collection by creating and deleting Item objects and setting
their pointers appropriately to maintain a singly linked list. Note in the class
diagram that the LinkedList has the responsibility to create and delete Item

objects, while the LinkedListSteppingTool only reads them and should not
delete them on destruction.

Client

• In this application the client has a VectorOfDoubles object called myCollection

which is initiated with the first 10 integers. Two instances of VectorSteppingTool
is then used to iterated differently through myCollection. The programmer
only need to change one line of code to change the instance of VectorOfDoubles
to an instance of LinkedList. Owing to the implementation of the iterator
design pattern, the use of the correct iterator for this LinkedList will be in-
stantiated without having to change any other code.

15.7 Exercises

1. Change the test harness (main program) of the system given in Section 15.6 to allow
the insertion and deletion of nodes during iteration and observe the impact. (See
Section 15.4.3).

2. Add a structure that stores a binary tree of double values to the system given in
Section 15.6. The values should be inserted in such a way that the left child of
every parent is smaller than its parent and the right child is larger than its parent.
Duplicates should be ignored. Implement different concrete SteppingTools to allow
pre-order, in-order, and post-order traversal of your binary tree.

12

Write a new test harness. This program should insert random double values si-
multaneously into a VectorOfDoubles and into your binary tree in the order they
are generated. Use a VectorSteppingTool to display the vector and your different
binary iterators to show the different traversals of your binary tree.

3. Implement an iterator for the composite in L13 Composite

• Implement the createIteror-method as an operation of the composite design
pattern.

• Define a composite iterator class as a concrete iterator in the Iterator design
pattern.

• Implement the operations that are defined in the Iterator to be recursive when
it is the iterator of a composite.

References

[1] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476 –493, jun 1994.

[2] Eric Freeman, Elisabeth Freeman, Bert Bates, and Kathy Sierra. Head First Design
Patterns. O’Reilly Media, Sebastopol, CA95472, 1 edition, 2004.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[4] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

[5] Sami Mäkelä and Ville Leppänen. Observation on lack of cohesion metrics. In Proceed-
ings of the International Conference on Computer Systems and Technologies, Comp-
SysTech06. 2006.

13

http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/
http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/

	Introduction
	Iterator Design Pattern
	Identification
	Problem
	Structure
	Participants

	Cohesion
	Iterator Pattern Explained
	Design
	Improvements achieved
	Disadvantage
	Real world example
	Related Patterns

	Implementation Issues
	Accessing the elements of the aggregate
	Additional functionality
	Internal and External iterators
	Allocation on the heap or on the stack
	Using C++ STL Iterators

	Example
	Exercises
	References

