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Identification

Name and Classification:

Strategy (Behavioural)

Intent:

“Define a family of algorithms, encapsulate
each one, and make them interchangeable.
Strategy lets the algorithm vary
independently from clients that use it."

GoF(315)



Structure
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@ Context holds a pointer to a strategy
object.

@ The strategy object may vary in
implementation in terms the
ConcreteStrategy to which is being
referred.

@ The pattern alleviates the need for a
complex conditional to select the desired

strategy.
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Participants

Strategy

@ Declares an interface common to all
supported algorithms.

@ Context uses this interface to call the
algorithm defined by a ConcreteStrategy.

ConcreteStrategy

@ Implements the algorithm defined by the
Strategy interface.

Linda Marshall and Vreda Pieterse Strategy



Participants

Context
@ Is configured with a ConcreteStrategy
object.
@ Maintains a reference to a Strategy
object.
@ May define an interface that lets
Strategy access its data.
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Related Patterns

Related Patterns
e Factory Method (107): Both Strategy
and Factory Method use delegation
through an abstract interface to
concrete implementations. However,
Strategy performs an operation while
Factory Method create an object.
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Related Patterns

Related Patterns cont.

@ State(305): State and Strategy have the
same structure and apply the same techniques
to achieve their goals, but differ in intent.
Strategy is about implementations which
accomplish the same result. One
implementation can replace the other as the
strategy requires. State is about doing
different things based on the state, this
relieves the caller from the burden of
accommodating every possible state.
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Related Patterns

Related Patterns cont.

e Template Method (325): Where
Template Method varies part(s) of the
algorithm, Strategy varies the entire
algorithm.

e Flyweight(195): Strategy objects often
makes good flyweights.
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UML class diagram
Client code
Context.h
Calculator.h

Example

Class diagram from existing code

Context

-strategy : Calculator® m Calculator
+Context() +execute()
+~Context) | __ _ TR B

+calculatel) Jay

Add Multiply Subtract
+executel) +executel) +executel)
+~Add() +~Multiplyl) +~Subtract()
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UML class diagram
Client code
Context.h
Calculator.

Example

#include <iostream>
#include " Context.h”
#include " Calculator.h”
using namespace std;
int main() {

Context* context[3];

// Three contexts following different strategies
context [0] = new Context(new Add());
int resultA = context[0]—>calculate (3,4);
context[1] = new Context(new Subtract()),
int resultB = context[l]—>calculate (3,4);
context [2] = new Context(new Multlply()),
int resultC = context[2]—>calculate (3,4);

cout << " Result_A_.:." << resultA << endl;
cout << "Result_B.:." << resultB << endl;
cout << "Result_CL:." << resultC << endl;

for (int i = 0; i < 3; i++) delete context[i];

return O;

}
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UML class diagram
Client code
Context.h
Calculator.h

Example

#ifndef CONTEXTH
#define CONTEXT.H
#include " Calculator.h”

class Context {

public:
Context(Calculatorx strategy);
“Context ();
int calculate(int a, int b);
private:
Calculatorx strategy;
I
#endif
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UML class diagram
Client code
Context.h
Calculator.h

Example

#ifndef CALCULATORH
#define CALCULATORH
class Calculator {

public:
virtual int execute(int a, int b) = 0;
s
class Add : public Calculator {
public:
virtual int execute(int a, int b);
“Add ();
class Subtract : public Calculator {
public:
virtual int execute(int a, int b);

“Subtract ();

+

class Multiply : public Calculator {
public:
virtual int execute(int a, int b);
“Multiply ();
I
#endif
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