Linda Marshall and Vreda Pieterse

Department of Computer Science
University of Pretoria

14 August 2015

Linda Marshall and Vreda Pieterse Strategy



Overview

@ !dentification

© Structure

© Participants

@ Related Patterns

© Example
@ UML class diagram
@ Client code

@ Context.h
Linda Marshall and Vreda Pieterse Strategy



Identification

Name and Classification:

Strategy (Behavioural)

Intent:

“Define a family of algorithms, encapsulate
each one, and make them interchangeable.
Strategy lets the algorithm vary
independently from clients that use it."

GoF(315)



Structure

Context

-strategy : Strategy™

+algorithm )

L=

strategy->algorithm); H

Linda Marshall and Vreda Pieterse

Strategy
+algorithm()

ConcreteStrategyA

+algorithm()

ConcreteStrategyB

+algarithm{)

ConcreteStrategyC

+algarithm{}

Strate




@ Context holds a pointer to a strategy
object.

@ The strategy object may vary in
implementation in terms the
ConcreteStrategy to which is being
referred.

@ The pattern alleviates the need for a
complex conditional to select the desired

strategy.
Linda Marshall and Vreda Pieterse Strategy



Participants

Strategy

@ Declares an interface common to all
supported algorithms.

@ Context uses this interface to call the
algorithm defined by a ConcreteStrategy.

ConcreteStrategy

@ Implements the algorithm defined by the
Strategy interface.

Linda Marshall and Vreda Pieterse Strategy



Participants

Context
@ Is configured with a ConcreteStrategy
object.
@ Maintains a reference to a Strategy
object.
@ May define an interface that lets
Strategy access its data.

Linda Marshall and Vreda Pieterse Strategy



Related Patterns

Related Patterns
e Factory Method (107): Both Strategy
and Factory Method use delegation
through an abstract interface to
concrete implementations. However,
Strategy performs an operation while
Factory Method create an object.

Linda Marshall and Vreda Pieterse Strategy



Related Patterns

Related Patterns cont.

@ State(305): State and Strategy have the
same structure and apply the same techniques
to achieve their goals, but differ in intent.
Strategy is about implementations which
accomplish the same result. One
implementation can replace the other as the
strategy requires. State is about doing
different things based on the state, this
relieves the caller from the burden of
accommodating every possible state.

Linda Marshall and Vreda Pieterse Strategy



Related Patterns

Related Patterns cont.

e Template Method (325): Where
Template Method varies part(s) of the
algorithm, Strategy varies the entire
algorithm.

e Flyweight(195): Strategy objects often
makes good flyweights.

Linda Marshall and Vreda Pieterse Strategy



UML class diagram
Client code
Context.h
Calculator.h

Example

Class diagram from existing code

Context

-strategy : Calculator® m Calculator
+Context() +execute()
+~Context) | __ _ TR B

+calculatel) Jay

Add Multiply Subtract
+executel) +executel) +executel)
+~Add() +~Multiplyl) +~Subtract()

Linda Marshall and Vreda Pieterse Strate,



UML class diagram
Client code
Context.h
Calculator.

Example

#include <iostream>
#include " Context.h”
#include " Calculator.h”
using namespace std;
int main() {

Context* context[3];

// Three contexts following different strategies
context [0] = new Context(new Add());
int resultA = context[0]—>calculate (3,4);
context[1] = new Context(new Subtract()),
int resultB = context[l]—>calculate (3,4);
context [2] = new Context(new Multlply()),
int resultC = context[2]—>calculate (3,4);

cout << " Result_A_.:." << resultA << endl;
cout << "Result_B.:." << resultB << endl;
cout << "Result_CL:." << resultC << endl;

for (int i = 0; i < 3; i++) delete context[i];

return O;

}
Linda Marshall and Vreda Pieterse Strategy



UML class diagram
Client code
Context.h
Calculator.h

Example

#ifndef CONTEXTH
#define CONTEXT.H
#include " Calculator.h”

class Context {

public:
Context(Calculatorx strategy);
“Context ();
int calculate(int a, int b);
private:
Calculatorx strategy;
I
#endif

Linda Marshall and Vreda Pieterse Strategy



UML class diagram
Client code
Context.h
Calculator.h

Example

#ifndef CALCULATORH
#define CALCULATORH
class Calculator {

public:
virtual int execute(int a, int b) = 0;
s
class Add : public Calculator {
public:
virtual int execute(int a, int b);
“Add ();
class Subtract : public Calculator {
public:
virtual int execute(int a, int b);

“Subtract ();

+

class Multiply : public Calculator {
public:
virtual int execute(int a, int b);
“Multiply ();
I
#endif

Linda Marshall and Vreda Pieterse Strategy



	Identification
	Structure
	Participants
	Related Patterns
	Example
	UML class diagram
	Client code
	Context.h
	Calculator.h


