Department of Computer Science UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

e

Tackling Design Patterns
Chapter 10: UML State Dlagrams

Copyright (©?2016 by Linda Marshall and Vreda Pieterse. All rights r

Contents

10.2.1 State Nodesl
(10.2.2 Transition edges|

(10.2.5 Signals|
(10.2.6 Composite dtates|o

(10.3 Examples|

10.1 Introduction

UML State diagrams are used to describe the behaviour of nontrivial objects. State
diagrams are good for describing the behaviour of one object over time and are used to
identify object attributes and to refine the behaviour description of an object.

A state is a condition in which an object can be at some point during its lifetime, for
some finite period of time [4]. State diagrams describe all the possible states a particular
object can get into and how the objects state changes as a result of external events that
reach the object [I]. The notation for state diagrams was first introduced by Harel [2],
and then adopted by UML.

10.2 Notational Elements

A UML State diagram is a graph in the mathematical sense of the word. It is a diagram
consisting of nodes and edges. The nodes can assume a variety of forms each with specific
meaning, while the edges are labeled arrows connecting these nodes. In Section
we discuss the basic nodes. The basic nodes are called state nodes. In Section [10.2.2]
we discuss the syntax for the edges. They are called transitions. To be able to model
complicated transitions special nodes called control nodes are introduced in Section|10.2.3|

10.2.1 State Nodes

There are three kinds of state nodes; initial nodes, state nodes and end nodes.

Figure 1: Initial Node

Figure [1| shows the symbol used to indicate the initial node. It is a filled circle. The
initial node is the starting point of a state diagram. It indicates the default state of an
object whose behaviour may change over time. A state diagram may at most have one
initial node. Although a diagram may be drawn without indicating the starting point it
is considered good practice to always have a starting point.

@

Figure 2: End Node

Figure [2| shows the symbol used to indicate an end node. It is a filled circle with another
open circle around it. It indicates where the system terminates. A system may be running
infinitely while sometimes changing state. In such case its UML state diagram may have
no end nodes. It is also permissible for a state diagram to have many final nodes. Since
a state diagram is used to model behaviour that is dependent on events that may or may
not happen, it is conceivable that the system may terminate in a variety of ways.

154l -.'A‘E-E{.w:. I

Figure 3: State Node

Figure [3| shows the symbol used to indicate a state. It is a rounded square. In a state
diagram each state other than the initial state (initial node) and the final state (end node),
should be named. The name of a state is a short descriptive name that can be used to
refer to the state. The name of the state in this figure is Active. We discuss more detail
about states in Section [[0.2.4l

10.2.2 Transition edges

Siaia Tl | \]: e Euentlﬁﬁa;djuf action ‘Rl" State 2
) i

Figure 4: Transition Edge

Transition edges in a state diagram are used to indicate transition between states. If an
object in a system changes state as a reaction to some event, it is indicated by connecting
the current state with a target state with an arrow labeled with the name of the event
that triggers such transition. The following detail may be shown on a transition in a UML
state diagram. These are all optional i.e. if not required, they may be omitted.

e The event that triggers the transition (text). If the event shown on the transition
is detected, the transition will fire and the state of the object will change to the
state at the end of the transition. If a transition is shown without an event it
triggers immediately after all actions that are associated with entering the state are
completed.

e A guard condition that is a prerequisite for transition (text in []). If the guard
condition is true the the transition will fire, otherwise it will not fire. When there
are more than one transition leaving the same node, the value of the guards my
determine which one of them will fire. If no guard condition is shown for a transition,
there are no preconditions required for the transition to fire.

e An action that is executed during transition (method name after /). Activities that
are executed while moving from one state to the other is shown in the form of a
method call on a transition label. Such method call must be preceded by a /. If the
transition from one state to another is not associated with some action, no action
is specified.

10.2.3 Control Nodes

There are two kinds of control nodes; decision-and-merge nodes to model alternate flows,
and fork-and-join nodes to model parallel flows.

Alternate Flows

To model alternate flows, decision-and-merge nodes are used. They are diamonds. They
are used both at the beginning and the end of alternate flows. The diamond at the
beginning of an alternate flow is called a decision node, while the diamond at the end of
the alternate flow is called a merge node. When a decision node is included in a UML
State diagram guard conditions are required to indicate the conditions that determine
which of the alternative flows will fire.

Figure [5| models a simple heating device. It sensors the current temperature in its sensing
state. It remains in sensing state until one of the conditions of the decision node is true.
The choice of which alternative flow to follow is determined by the guard conditions. If
[temp < 20] is true, the top flow will trigger. The device will be turned on as indicated
in the action on this transition. The device will remain in the heating state until the
event 2 min elapsed occurs. It will then follow through the merge node back to the
sensing state where it will stay until one of the guard conditions become true. Similarly
the device will be turned off when [temp > 25] is true whereafter the device will be in
idle state for a while before returning to sensing state.

[temp < 20] f turnOn " Heating % 2 minutes elapsed

W

_

Sensi
. [temp = 25] f turnOff f Idle " 2 minutes elapsed)&
ey
e

W

Figure 5: Heating device with alternate flows

Parallel Flows

To model parallel flows, fork-and-join nodes are used. They are heavy vertical or horizon-
tal lines. They are used both at the beginning and the end of parallel flows. The node at
the beginning of a number of parallel flows is called a fork node, while the node at the end
where the parallel flows meet again is called a join node. When a fork node is included in
a UML State diagram, all transitions leaving the fork node fire at the same time creating
different threads that execute simultaneously. The join node is used where these parallel
threads synchronise. It is also called a synchronisation point. The transition leaving a
join node fires only after all threads in the parallel flows meeting at the join have reached
the join.

Figure [6| models the stages of a system from implementation through testing to operation.
This diagram indicates that the hardware and software testing are executed in parallel.
The system will only enter its operation stage after both hardware and software testing

are completed.
Testing Modules Testing
integration

Figure 6: Stages of a system with parallel flows

Implementing

10.2.4 Actions

Actions can be executed during transition as was explained in Section [10.2.2] It is also
possible to indicate actions that are executed while the system is in a state. More often
such actions are triggered on entering a state or when leaving a state. Figure [7] shows the
syntax for indicating such actions. In this figure the pickUp action will execute when the
Receiving state is reached and the disconnect action will execute before a transition to
a next state is performed.

o | Recievir:.g- e
entry [pickUp
exit f disconnect

Figure 7: Actions that are executed in a state

10.2.5 Signals

SendSignalAction

Figure 8: Signal node

In event driven programming events are generated while a system is running. Many of
these events are generated by the users of the system, for example when selecting a menu

option or clicking a button. Some of the events can also be generated by actions executed
by the system. For example when a timer times-out or when some critical threshold is
reached. These events can be modelled using a signal node. Figure |8 shows the syntax for
a signal node. When a signal node is reached in a UML State Diagram an event named
by the label on the signal node is generated. This event can trigger a transition in any
other state in the diagram to fire as a result of this event. When a signal is reached, the
event is generated and all transitions in the diagram that is associated with the event will
trigger.

10.2.6 Composite States

A UML State Diagram can be nested in a state. The two diagrams in Figure [J] was
taken from [5]. They model the same states. In the left diagram the UML State Diagram
showing the sub-states of the Check-PIN state is shown in detail, while they are hidden
in the diagram at the right. Notice how the oo symbol us used to indicate that a state is
a composite state.

(Check PIN)

Enter PIN

[/ verify PIN

Checl PIN power off

power off

[pin valid] [pin invalid]

Search Network

power off

Search Metwork “I power off
network found

.

B R

network found \

power off

Readﬁ (Off

power off

Figure 9: Composite

10.3 Examples

Figure [10[shows a UML State Diagram for a player’s turn in Monopoly taken from [6]. Tt
shows all the possible actions and conditions required before taking these actions while
making transitions between the states one can be in during one’s turn in the Monopoly
game. This diagram serves as a good example by itself if you are familiar with the game.

®

|playerMoney < bail] / bancruptcy Trade
LstartTrade ‘}..
PayBail ™
N VoW W
f’ BeforeDice B
tradeAccepted] / completeTrade
>
|curretPosition == goTolailCell injail
L
BuyHouses e =
manopoly] f buyHouses
{ rollDice
|playerMoney < rent] [bankruptcy
: W [currentPos == ccCell

[propertyOwned] [payRent [’DiceRoIIE{! \] currentPos == chanceCell|

Pa"‘m}
ropertyAvailable A
Lafpery J r DrawCard

W

BuyProperty

W

EndTm/

}L'_J\

[nextPlayer

Figure 10: UML State Diagram for a turn in Monopoly

Figure [11] shows a UML State Diagram of a very fancy toaster for toasting bread taken
from [3]. It has a timer like most of the common toasters we use in our houses today. In
parallel with the timer it uses an on-off cycle similar to the device modelled in Figure [5
Along with all this it features a safety feature that monitors both the absolute colour of
the toast as well as the change rate of the colour and will trigger a bomb-out (Done-signal)
if one of these measures are not OK.

10.4 Exercises

1. Describe all actions and transitions that will execute in the diagram in Figure [10] if
a player rolls the dice and lands on a property for which the rent is higher than the
value of playerMoney.

2. Extend the diagram in Figure (11| model an Unplugged state. It should be the initial

state.When a plug-out event occurs in any of the existing states it should imme-
diately transition to this state. When a plug-in event occurs it should transition
from Unplugged to Idle unless it’s sensor detects that there is a slice of bread in it.
In such a case it should start toasting the bread as if the start event had happened.

3. Draw a UML State Machine diagram to visualise the states of a torch that is oper-
ated with an on-off switch. When the torch is switched on, it shines yellow. It can
only be switched off if the switch is turned off while the torch is shining red. The
torch will start shining red when it is switched on while it was shining yellow. If
the torch is switched off when shining yellow, it start shining white. If it is turned
off while shining white, it starts shining yellow.

References

[1] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, Reading, Mass, 2003. ISBN 0-321-19368-
7.

[2] David Harel. Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231 — 274, 1987.

[3] Robert C. Martin. Uml tutorial: Complex transitions. http://www.objectmentor.
com/resources/articles/cplxtrns.pdf, 1998. [Online: Accessed 29 June 2011].

[4] Kendall Scott. UML Explained. Addison-Wesley, Boston, Massachusetts, 2001.
[5] n.a. Sparx Systems Pty Ltd. Uml 2 state machine diagram, 2001.

[6] Laurie Williams. An introduction to the unified modeling language: A picture
is worth a thousand words. agile.csc.ncsu.edu/SEMaterials/UMLOverview.pdf,
2004. [Online; accessed 30-June-2011].

http://www.objectmentor.com/resources/articles/cplxtrns.pdf
http://www.objectmentor.com/resources/articles/cplxtrns.pdf
agile.csc.ncsu.edu/SEMaterials/UMLOverview.pdf

Figure 1

“Idle

o

Done

Color

Read Color
Sensor

Waiting to Check

\ \ent(y/HeaterO;‘f

Too Hot

Check

Check
Temperature

Cold

Too Check

Heater On

\entry/HeaterOn() /
~N—

N

Check absolute
color

Check Color
Change Rate

Too Dark

| |
Too Light

N Bad
O

l
< e
)

Done

/ Heater Off :w
0 '

J

/ Eject

/ ResetTimer

Iimér Running

Expired

Done /
StopTimer

o>

L)

=g

Figure 11: UML State Diagram modeling a toaster

	Introduction
	Notational Elements
	State Nodes
	Transition edges
	Control Nodes
	Actions
	Signals
	Composite States

	Examples
	Exercises
	References

