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11.1 Introduction

This lecture note will explain the structure of the composite design pattern. The com-
posite design pattern effectively builds a structure of related objects in the form of a tree.
These objects can be traversed by making using of the run-time polymorphic properties
of object oriented programming. To successfully implement the composite design pattern
design issues are considered and the clearing of the entire structure from memory after it
goes out of scope. In order to address these issues the C++ Standard Template Library
is introduced.

11.2 Programming Preliminaries

11.2.1 C++ Standard Template Library

The Standard Template Library (STL) for C++ is a generic library comprising of con-
tainers, algorithms, iterators and functors. The library relies heavily on compile-time
polymorphism and therefore template programming constructs for the implementation of
data structures and algorithms for multiple object types [4, 1].

Containers are data structures that contain other classes. The classes contained by the
containers must at least be copy constructible and assignable. In order to apply algo-
rithms on the containers and to a lesser extent iterators, the classes contained must also
be less-than comparable. Stated in other words, the class needs to define a copy con-
structor, assignment operator and a less than operator. Muldner [3] refer to objects that
are canonically constructible, meaning that they have a constructor, copy constructor,
assignment operator and destructor defined in them. A good principle to follow when
using the STL is to ensure that all objects are canonically constructible and that they are
further less-than comparable (have a less-than operator defined).

Containers are classified as either sequence or associative in nature. Every element in
a sequence container has either a predecessor and/or a successor with the exception of
the first and last element. Examples of sequence containers are: vectors, deques and
lists. Associative containers, as their name refers to, exhibit a relationship between the
elements of the container. This relationship may be in terms of another element or as
a result of a “key” defined to access the object. Examples of associative containers are:
sets and multisets, and maps and multimaps. Other containers exist that make use of
the above containers as base but provide a different interface.

In order to traverse containers, the STL provides iterators for the containers. These
iterators are built on the principles that will be seen during the discussion of the iterator
design pattern. The STL further provides algorithms, such as searching and sorting that
along with the iterators can be applied to the containers. Functors or function pointers
are pointers to functions and provide the functionality that a function may be sent as a
parameter to another function.

In the section that follows two sequence containers in the STL will briefly be discussed.
Choosing between the two is dependent on the application for which they are being used.
A vector is similar to an array, but will dynamically change its size when elements are
inserted or deleted. Elements are inserted at the back of the vector and removed from
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Vector List
Members
Category signature
Construction constructor y y

destructor y y
operator= y y

Accessor size y y
empty y y
front y y
back y y
operator[] y n
at y n

Mutator push front n y
pop front n y
push back y y
pop back y y
clear y y

Iterator begin
end

Table 1: Summary of vector and list members

the back as well. A list is optmised for insertion, deletion and moving elements around in
the containers. Elements in a list are inserted or deleted either at the front or the back.

11.2.1.1 Summary of Vector and List container members

A summary of the members of the STL vector and STL list implementations are given
in table 1. The members are categorised in the following categories: Construction/De-
struction, Accessor, Mutator and Iterator. For each of these categories an indication of
whether a specific member is implemented for the container or not is given.

Other members also exist for each of the STL containers. Further details regarding the
containers are beyond the scope of this lecture note and can be found by searching the
internet. There are also good examples regarding the use of the containers available on
the internet.

11.2.1.2 Application to previous design patterns

Lists and vectors can easily be used by the caretaker of the Memento pattern in order
to store the state of more than one object. They can also be effective be applied to
the Abstract Factory example given in Chapter 7 so that all memory is cleared and the
example presented in the lecture notes does not exhibit a memory leak.
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11.2.2 Anonymous objects

In order to understand the concepts better, some C++ background regarding anonymous
objects needs to be explained. An anonymous object is an object for which the code
creating the object has not got a handle to the object. Consider the following example:

Listing 1: Example of anonymous object creation

1 class A {
2 // a l l the c l a s s s t u f f
3 } ;
4
5 class B {
6 public :
7 B(A∗ in ) { a = in ; } ;
8 private :
9 A∗ a ;

10 } ;
11
12 // Some c l i e n t code
13 B b(new A( ) ) ;

The object created and sent as a parameter to the constructor of class B is anonymous.
The client has no way of accessing this object and therefor when it goes out of scope the
object is not cleared from memory resulting in a memory leak.

The problem comes down to who takes ownership of the object. If the client keeps
ownership, then the client must be able to acquire a handle to the object in order to be
able to delete it. This can be achieved by defining a variable for the object a as follows
and replacing line 13 in listing 1 with the following code:

A∗ a = new A( ) ;
B b( a ) ;

Another possibility for the client to gain ownership is if class B defines a getter operation
that returns a pointer to the object. For both these scenarios, it is now the obligation of
the main program to delete the object from the heap before the program goes out of scope.
As object b is on the stack, it will go out of scope when the main program terminates.
The following code will ensure that object a is delete from the heap.

delete a ;

Assuming that the design decision made for listing 1 is that ownership of the object is
given to class B. This means that when object b goes out of scope the object of class A

it points to must all be destroyed. Class B must therefore implement a destructor that
provides this functionality as the default destructor does not remove objects from the
heap memory by including the following code after line 7 of listing 1.

virtual ˜B( ) { delete a ; } ;

The destructor has been defined as virtual to ensure that if another class inherits from
B, the destructor is still called when that class goes out of scope.
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11.3 Composite Design Pattern

11.3.1 Identification

Name Classification Strategy
Composite Structural Delegation (Object)
Intent
Compose objects into tree structures to represent part-whole hierarchies. Com-
posite lets clients treat individual objects and compositions of objects uniformly.
([2]:163)

11.3.2 Structure

Figure 1: The structure of the Composite Pattern

11.3.3 Problem

Used in hierarchies where some objects are composite of other. Makes use of a store for
the children defined by Composite

11.3.4 Participants

Component

• provides the interface with which the client interacts.

Leaf

• do not have children, define the primitive objects of the composition.

Composite

• contains children that are either composites or leaves.

Client

• manipulates the objects that comprise the composite.
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11.4 Composite Pattern Explained

The composite pattern inherently builds a tree (refer to Figure 2) with the intermedi-
ate nodes being instances of composite and the leaf nodes being instances of the leaf
participants.

Figure 2: Examples of tree structures

11.4.1 Implementation Issues

During the design of the system a decision must be made regarding the destruction of
the composite. This decision will influence how the client may construct objects and pass
them to the composite. There are two options with regards to destruction of the com-
posite, the first requires the client to take responsibility. The second destruction design
leaves the responsibility of the destruction of objects up to the composite. Both these
implementations have their advantages and drawbacks. If the client takes responsibility
for the destruction of objects then no anonymous objects may be created. On the other
hand, having the composite handle the destruction of objects will allow the client to pass
anonymous objects to the composite. In this case the client will need to guarantee that it
will not use any objects for which it still has handles after it has destructed the composite.

11.4.2 Related Patterns

Chain of Responsibility
Creates a structure that defines a component-parent link.

Decorator
Used in conjunction with components to add state to the components. When a
decorator and a composite are combined, they usually share the same parent class.

Flyweight
Allows sharing of objects, particularly the leaf nodes

Iterator and Visitor
Used to traverse the composite structure.
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11.5 Example

11.5.1 Tree

In this example a tree will be built in which each node of the tree is represented by an
integer. The UML class diagram is given in Figure 3. The abstract Tree class defines
operations that can be applied to the tree. In this case a Tree node can be added to the
tree or the node can be printed.

Figure 3: Tree example Figure 4: Tree example updated

When the association relationship between the composite participant IntermediateNode
and the component participant Tree is drawn in Visual Paradigm, it is drawn as both a
dependency and an association. The dependency is as a result of a Tree* being sent as a
parameter to add, which also accounts for the dependency between BaseNode and Tree.
The association is as a result of the vector next of Tree*. According to the structure of
the pattern given in Figure 1 this association should be aggregation and it is not necessary
to include the dependencies. The class diagram given in Figure 4 is more in line with the
intended structure of the pattern and needs to be manually updated in Visual Paradigm.

Both the examples in Figures 3 and 4 require the client to take responsibility for the
deletion of the objects, unfortunately this can lead to memory leaks. In the example in
Figure 5, the deletion of the objects in the hierarchy is the responsibility of the composite.

The implementation of the destructor of the Tree class is empty as is that of BaseNode.
The destructor of IntermediateNode must iterate through the next vector and delete
each element is points to. The implementation of the IntermediateNode destructor,
along with the implementations of all the other operations of the IntermediateNode

class shown in Figure 5, is given in the listing below. This code illustrates how elements
are inserted into the vector container as well as how to iterate through the container.
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Figure 5: Tree example with the composite taking ownership of destruction

class IntermediateNode : public Tree
{

public :
IntermediateNode ( int v ) ;
virtual void add ( Tree ∗ ) ;
virtual void pr in t ( ) ;
virtual ˜ IntermediateNode ( ) ;

private :
int value ;
vector<Tree∗> next ;

} ;

IntermediateNode : : IntermediateNode ( int v ) : va lue ( v )
{
}

void IntermediateNode : : add ( Tree∗ t )
{

next . push back ( t ) ;
}

void IntermediateNode : : p r i n t ( )
{

cout << ”−” << value << ” [ ” ;
vector<Tree ∗> : : i t e r a t o r i t ;

for ( i t = next . begin ( ) ; i t != next . end ( ) ; ++i t )
{

(∗ i t )−>pr in t ( ) ;
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}
cout << ” ] ” ;

}

IntermediateNode : : ˜ IntermediateNode ( )
{

vector<Tree ∗> : : i t e r a t o r i t ;

for ( i t = next . begin ( ) ; i t != next . end ( ) ; ++i t )
{

delete ∗ i t ;
}

}

11.5.2 Graphics

Consider the Shape Hierarchy that was introduced in the Abstract Factory chapter. Figure
6 serves as a refresher for this hierarchy.

From the hierarchy it is clear that the three (3) concrete triangle classes, the part of the
hierarchy from Parallelogram down, and Ellipse and its subclass Circle will form leaf nodes
of the Composite design pattern. The Shape class will fulfill the role of the Component
participant and a new class that represents the composite participant must be designed.
For this design, the area and perimeter of the composite will be determined by calculating
the sum of the area and perimeter of its constituents respectively. Figure 7 provides the
class structure for the composite shape hierarchy.

11.6 Exercises

1. Refactor the Tree example given in Figure 5 so that int value is defined in one
place only.

2. How would you modify the composite participant to build a binary tree? A binary
tree is a tree where the composite participant only has two children. These children
may either be an instance of composite or a leaf participant.
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Figure 6: Shape hierarchy
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Figure 7: Composite Shape hierarchy
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