Department of Computer Science UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

ez

Tackling Design Patterns
Chapter 22: Bullder Desngn Pattern

Copyright (©?2016 by Linda Marshall and Vreda Pieterse. All rights r

Contents

[22.3 Practical Example] 0000

(22.4 Builder compared with Factory Method|.

[22.5 Builder Pattern Explained]

[22.5.2 Improvements achieved| o000
[22.5.3 Common Misconception|o

[22.6 Implementation Issues| 000000
[22.6.1 Creating a product|.
[22.6.2 Model for constructing a product|.
[22.6.3 Extending a product|. L
[22.6.4 Varying construction|.

[22.8 Example|.

22.1 Introduction

The builder pattern is a creational pattern that adds an additional level of abstraction in
order to separate the process of construction of a complex object from the representation
of the object. This allows the designer to easily add or change representations without
having to change the code defining the process. It will also be possible to change the

process without having to change the representations.

22.2 Builder Design Pattern

22.2.1 Identification

Name Classification Strategy
Builder Creational Delegation
Intent

Separate the construction of a complex object from its representation so that the
same construction process can create different representations. ([1]:97)

22.2.2 Structure

U Eliene T

\

Director

+construct{)

“builder : Builder* [<>——————— +buildPart

A4

Builder

Type constructl} |

for all objects in structure {
builder-=buildPart(};
}

B ConcreteBuilder

+getRes ult()
+buildPart()

Product

Figure 1: The structure of the Builder Design Pattern

22.2.3 Participants

Builder

e specifies an abstract interface for creating parts of a Product object.

Concrete Builder

e constructs and assembles parts of the product by implementing the Builder

interface.

e defines and keeps track of the representation it creates.

e provides an interface for retrieving the product

Director

e constructs an object using the Builder interface.

Product

e represents the complex object under construction. ConcreteBuilder builds the
product’s internal representation and defines the process by which it’s assem-

bled.

e includes classes that define the constituent parts, including interfaces for as-

sembling the parts into the final result.

22.2.4 Problem

An application maintains a complex aggregate and provide for the construction of different
representations of the aggregate. There is a need to design the application in such a
way that the addition of more representations of the aggregate would require minimal

modification of the application.

22.3 Practical Example

ATFHReader

ParseATF() ¢ C___\'_-"'-F‘Ider

TextConverier

=]
white (1= gelthe next token} |
gwitch L Type |

CHAR:

brildar—=ComvarCharactes{L Char)
FOMT:

Baulldes—=CemvenFamChange(t, Fant)
PARA:

Estallclg ..-_-,Cnﬂl.-erlI‘:-"‘}!ul:'ig;.ﬂ."ullu:]
II

ConvertCharacter|char)

CanvarfontChangs! Font)

ConvertParagraph)

A

ASCIConverter

TeXConverter

ToxtWidgetConverier

ComeernCharacier |ehaar)

GatASCHText])

ComvenCharacar|char)
ConveriFontChangs(Font)
CenvenParagraph()

GalTeXTaxt)

ComerCharacten|char)
ComeertFoniChange|Font)
CeereertPar agraphi)
GatTextWidgst)

ASClText

- TeXText

Figure 2: The design of a text converter

An example where the application of the builder pattern is useful offered by [I] is a parser
of documents in RTF format that is used to produce documents in ASCII text format,

- TextWidget

in TEX format or in a custom format for a text widget. Figure [2|is the class diagram of
this application. The participants of the builder pattern in this implementation can be
identified as follows:

Participant Entity in application

Director RTF Reader

Builder TextConvereter

Concrete Builders | ASCIIConverter, TeXConverter, Text WidgetConverter
Products ASCIIText, TeXText, text Widget

construct() parseRTF

buildPart() convertCharacter(), convertFontChange(), convertPraragraph()
getResult() get ASCIIText(), getTexText(), getTextWidget ()

The extension of this system to produce other text formats will entail creating a concrete
builder for the required format. For example to add a DocConverter that can create a MS
Word document. It will be also easy to re-use these converters by another director. For
example if you have built your own I¥TEXeditor, you can re-use these builders to convert
the BTEXsource to any one of the supported formats.

22.4 Builder compared with Factory Method

The following can be observed when the structure of the Builder pattern is compared with
that of the Factory Method pattern:

e The Builder pattern contains a Director class, which does not exist in the Factory
Method pattern. The construct ()-method that is defined in the Director partic-
ipant of the Builder pattern, is the equivalent of the anOperation()-method as
defined in the Creator participant of the Factory Method pattern. Thus the Builder
Pattern requires an additional class in which the algorithm describing the process
to construct an object is defined.

e The Builder pattern does not have an abstract product as does the Factory Method
pattern. It is explained in [I] that when the Builder Pattern it used it is likely that
the concrete products are likely to be so diverse that there is little to gain from
giving these products a common parent class. This implies that if the application
requires the created products to have a common interface, the Builder design pattern
is probably not the most suitable pattern to use for the application.

22.5 Builder Pattern Explained

22.5.1 Interaction and Collaboration

Figure |3]is a sequence diagram that illustrates how the participants of the Builder pattern
cooperate to create an object and give the client access to the created object. The client
has to create or be given a concrete builder capable of constructing the required product.
The client also has to have access to a director which defines the process to construct the

4

required product and knows the correct concrete builder that will assemble the required
product. If all this is in place, the client simply issue a command to the director to
construct the required product and retrieve it from the concrete builder when completed.

The build process as defined in the director is executed in terms of a series of calls to
the concrete builder which will create the product and assemble it by adding parts to it.
The process of assembling the product as well as the internal structure of the product is
hidden from the client.

Building a product
I

AConcreteBuilder()

I
I
|
I
h buildPartA() h}
! | Product()
. Froduct) . .
1 buildPartB() :L ----- product ‘ Product
i >} addPartB() !
| ! | g
I
! !
! buildPartN() |
i ! > addPartN()
| |
! getResult() : Product !
I

>

Figure 3: Cooperation of the participants of the Builder Pattern

22.5.2 Improvements achieved

[1] offers the following consequences of the application of the builder design pattern:

e Variation product’s internal representation
Builder object provides the director with an abstract interface for constructing the
product. The interface lets the builder hide the representation and internal structure
of the product. It also hides how the product gets assembled.

e Separation of code for construction and representation
The Builder pattern improves modularity by encapsulating the way a complex object
is constructed and represented. Clients need not know anything about the classes
that define the product’s internal structure.

e Finer control over the construction process
Unlike creational patterns that construct products in one shot, the Builder pattern
constructs the product step by step under the director’s control. Only when the
product is finished does the client retrieve it from the builder.

22.5.3 Common Misconception

Programmers are often under the impression that the application of a complicated algo-
rithm for the construction of multi-part objects constitutes the application of the Builder
pattern. However, if this algorithm is implemented in the abstract class of the ‘Concrete
Builder’ objects, it is in fact an implementation of the Factory Method pattern. Thus, we
do not agree with [2] who states that “directors can actually be the builder themselves”.
To be an implementation of the Builder Pattern, this algorithm has to be implemented
in a separate ‘Director’ class.

22.6 Implementation Issues

22.6.1 Creating a product

Each concrete builder has the responsibility to define its own process to create a product
in terms of the methods defined in the abstract builder. Each time a product is created,
it has to be created from scratch. This can be done either by creating a default product
in the first method that is executed by the director or by always having a default product
handy.

The option to create a new default product in the first method that is executed by the
director is less versatile since it it prescriptive in what method the director should always
execute first. However, it is more robust because it is easier to ensure that the copy of the
product under construction was not altered in a previous use of the concrete constructor,
especially if the same instance of a concrete constructor is re-used by different directors.

The option to have a default product handy can be achieved by instantiating a default
product on construction of the concrete builder. This is a viable option if the concrete
builder is destroyed after creating an instance of a product and recreated each time it is
needed. In situations where the same instance of a concrete builder is re-used, the option
to create a product in a method call issued by the director is a better option.

22.6.2 Model for constructing a product

Builders construct their products in step-by-step fashion. Therefore the Builder class
interface must be general enough to allow the construction of products for all kinds of
concrete builders. A key design issue concerns the model for the construction and assembly
process. A model where the results of construction requests are simply appended to the
product is usually sufficient. But sometimes you might need access to parts of the product
constructed earlier. In that case, more methods to enable communication between the
builder and the director is needed to enable the director to retrieve parts, modify them
and pass them back to the builder.

22.6.3 Extending a product

Each concrete builder creates a unique product. A concrete builder is allowed to define
and add parts to a product that is not controlled by the director. Concrete builders usually

define and maintain instance variables that can eliminate the need for the director to pass
many values by means of parameters to the methods that assemble the product.

22.6.4 Varying construction

Since the code for construction and code for representation is separated from one another
the design allows exchanging the construction process. Thus, different directors can use
the same concrete builders in different ways to build product variants from the same set
of parts.

22.7 Related Patterns

Composite
Builder usually construct composite objects.

Abstract Factory
Abstract Factory is similar to Builder in that it too may construct complex objects.
The primary difference is that the Builder pattern focuses on constructing a complex
object step by step. Abstract Factory’s emphasis is on families of product objects
(either simple or complex). Builder returns the product as a final step, but as far as
the Abstract Factory pattern is concerned, the product gets returned immediately.

22.8 Example

In a real application of the builder pattern a director may depend on data that specify the
detail of the aggregate. The process of creating a new product involve interpreting the
data and issuing commands related to this interpretation to a concrete builder. Different
concrete builders are able to create different variations of a product through different
implementations of these commands issued by the director. It is important to note that
in many cases concrete builders implement only the operations they need and omit the
others.

Since the interpretation of data that specifies the aggregate is not part of the pattern,
our example assumes a small hard coded aggregate (a soft toy) that has exactly five parts
(name, body, stuffing, heart and voice).

Figure {4 is a class diagram of our example implementation. It is a nonsense program that
implements the builder structure to illustrate how different directors can use the same
concrete builders to create variations of the products that are produced. The different
products deliberately have different internal structures and different interfaces to illustrate
how this pattern allows for the creation of divers products by the same director when using
a different concrete builder.

Client
<> <>
Shop SoftToyMachine Mother
-machine : Soft ToyMachine* ~ hi +select Bodw) -machine : Soft ToyMachine*
~bearMame : string machine + stuffi) .H<>+Mntherﬂ
+Shap() <> 8| tinsertHeart() RSl +~Mother(
+~5hop() +addVoice +Construct()
+construct() +setName() +setMachinel)
A N
Cudd lyBearMaker PlainGiraffeMaker PlainGiraffe
-bear : CuddlyBear -giraffe : PlainCiraffe* -name : char[10]
CuddlyBear +CuddlyBearMaker() +PlainGiraffeMaker() “‘Dl_[’”r :char{20]
-part : map <string, string> +selectBodyl) +~PlainGiraffeMaker() -giraffe |"Weight: double
+CuddlyBear() +stuff() +selectBody() Lol b
+CuddlyBear() e~ insertHeart() +stuff() +PlainGiraffe()
+setPart() +addVoicel) +getGiraffel) +PlainGiraffe()
+show() ~bear +setMame() +selectSkin(
+getBear() +setWeighti)
+setHight()
+describe(
Figure 4: Class Diagram of a soft toy builder nonsense program
Participant Entity in application
Directors Mother, Shop
Builder SoftToyMachine
Concrete Builders | PlainGiraffeMaker, CuddlyBearMaker
Products PlainGiraffe, CuddlyBear
construct() construct()
buildPart() selectBody(), stuff(), insertHeart(), addVoice(), setName()
getResult() getGirrafe(), getBear()
Directors

e The Mother class and the Shop class are different directors. Both are imple-
mented to use instances of the same concrete builders to create products.

e The Mother class has a method that allows the client to equip a Mother object
with another concrete builder on the fly, while the Shop class is instantiated
with its concrete builder on construction. The only way to equip a Shop object
with another concrete builder is by recreating it.

e The construct() methods of these two classes are different. The Shop class
calls all the methods in the interface and make use of parameters to specify
high quality products while the Mother class omits some of the methods and
calls other with default values.

Builder

e The SoftToyMachine class act as the builder. It defines the union of all opera-
tions needed by the different concrete builders. Those that are not necessarily
required are provided with empty implementations.

e This interface specifies the methods that has to be implemented by the concrete
builders. All its methods are virtual to allow concrete builders to override them.

e selectBody() and stuff () are pure virtual. Each concrete builder is required
to implement these.

e insertHeart(), addVoice() and setName() has default empty implementa-
tions. Usually most of the methods specified in a builder should be specified
as such, to allow a concrete builder to omit them if they are not required in
the products created by the concrete builder.

Concrete Builders

e The classes CuddlyBearMaker and PlainGiraffeMaker act as concrete builders.

e Each of these classes provides its own implementation of the building process.
They implement the common interface that is defined in SoftToyMachine
to adapt the methods in the concrete products to the methods defined in
SoftToyMachine.

e CuddlyBearMaker instantiates its product on construction. It is therefore not
reusable. For this reason different instances of this class is used by the different
directors in this example.

e PlainGiraffeMaker instantiates its product in the selectBody() method.
It is therefore required that each director should call this method first in its
construct () method. Notice that it deletes any previous instance of the prod-
uct (if it exists) before creating a new one. This is done to avoid a memory
leak. Also notice how its getGiraffe () method returns a copy of this product,
rather than the product itself. This is done because the product that is created
will be destroyed when this concrete builder is reused. The copy is owned by
the client and is destroyed by this concrete builder.

Products

e The products are PlainGirrafe and CuddlyBear. You will notice that these
products do not share a common abstract interface. This is a distinct feature
of the situation where the builder design pattern is deemed appropriate.

Client

e The client constructs instances of directors, concrete builders and products.
It then illustrates how the different directors uses the same concrete builders
to create different variants of the products. The output is the detail of the
products that was created by the different directors.

22.9 Exercise

1. Draw a class diagram showing the participants of the builder pattern to implement
dynamic context sensitive creation of menus in a word processing program.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[2] Christopher G. Lasater. Design Patterns. Wordware Publishing Inc., Texas, USA,
2007.

10

	Introduction
	Builder Design Pattern
	Identification
	Structure
	Participants
	Problem

	Practical Example
	Builder compared with Factory Method
	Builder Pattern Explained
	Interaction and Collaboration
	Improvements achieved
	Common Misconception

	Implementation Issues
	Creating a product
	Model for constructing a product
	Extending a product
	Varying construction

	Related Patterns
	Example
	Exercise
	References

