Department of Computer Science UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Tackling Design Patterns
Chapter 23: Interpreter Desngn Pattern

Copyright (©?2016 by Linda Marshall and Vreda Pieterse. All rights r

Contents
231 TIntroductionl
(23.2 Interpreter Design Pattern|
2321 Identification|
2322 Structure
[23.2.3 Participants|
2324 Probleml
23.3 Interpreter pattern explained|,
[23.3.1 Improvements achieved|
[23.3.2 Situations where other solutions may be more suitablel
[23.3.3 Common Misconception| L
23.3.4 Related Patternsf oo
23.4 How to implement the interpreter pattern|
[23.4.1 Define a grammar|
[23.4.2 Use the grammar to design the system|.
[23.4.3 Implement the design using the grammar|
[23.5 Example|.
[23.5.1 The problem|
[23.5.2 Alanguage|
[23.5.3 A grammar|
[23.5.4 Mapping the grammar to a design|
[23.5.5 Implementing the design|
23.6 Tutoriall
[23.6.1 The problem|o
[23.6.2 A grammar|
[23.6.3 Mapping the grammar to a design|
[23.6.4 Implementing the design|
Referencesl

23.1

The interpreter design pattern is a behavioral pattern relying on its inheritance structure
to achieve its purpose. It represents a grammar as a class hierarchy and implements an
interpreter as an operation on instances of these classes. When the interpreter is executed
on a composite node in the hierarchy it propagates to all the descendants of such node.

In this lecture we assume a basic knowledge of grammars. We illustrate by example how

Introduction

the pattern is applied to translate given grammars into implementations.

23.2 Interpreter Design Pattern

23.2.1 Identification

Name Classification Strategy
Interpreter Behavioural Inheritance
Intent

Given a language, define a represention for its grammar along with aninterpreter
that uses the representation to interpret sentences in thelanguage. ([2]:243)

23.2.2

Structure

v Context

Client

AbstractExpression

+interpret{ : Comnte xt)

1

Q

Terminal Ex pres sion

MonTerminalExpression

+interpret{ - Come xt)

+interpret{ - Conte xt)

Figure 1: The structure of the Interpreter Design Pattern

23.2.3 Participants

AbstractExpression

e declares an abstract Interpret operation that is common to all nodes in the
abstract syntax tree.

TerminalExpression
e implements an Interpret operation associated with terminal symbols in the

grammar.

e an instance is required for every terminal symbol in a sentence.
NonterminalExpression

e one such class is required for every rule R ::= R1 R2 ... Rn in the grammar.

e maintains instance variables of type AbstractExpression for each of the symbols
R1 through Rn.

e implements an Interpret operation for nonterminal symbols in the grammar.
Interpret typically calls itself recursively on the variables representing R1 through
Rn.

Context
e contains information that’s global to the interpreter.
Client

e builds (or is given) an abstract syntax tree representing a particular sentence in
the language that the grammar defines. The abstract syntax tree is assembled
from instances of the NonterminalExpression and TerminalExpression classes.

e invokes the Interpret operation.

23.2.4 Problem

A class of problems occurs repeatedly in a well-defined and well-understood domain. If
the domain were characterized with a language that can be expressed in terms of a formal
grammar, then problems could be easily solved with an interpretation engine representing
the grammar. [3].

23.3 Interpreter pattern explained

23.3.1 Improvements achieved

Improved adaptability
It’s easy to change and extend the grammar. Because the pattern uses classes to
represent grammar rules, you can use inheritance to change or extend the grammar.
Existing expressions can be modified incrementally, and new expressions can be
defined as variations on old ones.

Implementation can be automated
Once a grammar is defined, the class design and its implementation is completely
determined by the rules of the grammar. The generation of code for classes defining
nodes in the abstract syntax tree can often be automated with a compiler or parser
generator using the grammar as input.

23.3.2 Situations where other solutions may be more suitable

The pattern is not suitable for complex grammars. If the grammar is complex the class
hierarchy for the grammar becomes large and unmanageable. Tools such as parser gen-
erators are a better alternative in such cases. They can interpret expressions without
building abstract syntax trees, which can save space and possibly time.

If you need multiple interpreter operations, then it might be better to use the Visitor pat-
tern. Here every interpret operation can be implemented in a separate visitor object. For
example, a grammar for a programming language will have many operations on abstract
syntax trees, such as type-checking, optimization, code generation, and so on. It will be
more likely to use a visitor to avoid defining these operations on every grammar class.

23.3.3 Common Misconception

The pattern require the existence of an abstract syntax tree of the expression that has
to be interpreted. It is often assumed that the compilation of the abstract syntax tree
of the sentence that needs to be interpreted is part of the pattern and that the pattern
can only be implemented if a parser of text input is involved. However, the Interpreter
pattern doesn’t explain how to create an abstract syntax tree.

The pattern does not address parsing. The abstract syntax tree can be created by a
table-driven parser, by a hand-crafted (usually recursive descent) parser, or directly by
the client. Thus the abstract syntax tree is generated from input provided through a GUI
or a series of prompts. For example the syntax tree of a mathematical expression may as
well be compiled using the following code assuming that the methods that are called in
the switch statement will also prompt the user to enter appropriate information.

Expression* inputExpression(string prompt)
{
Expression* exp;
cout << ”Specify.the_type_of_the.” << prompt << endl;
cout << 71._A_value” << endl;
cout << 72._A_variable” << endl;
cout << 7 3._An_operation” << endl;
cout << 7" Enter_your.choice:.”;
int choice;
cin >> choice;
switch (choice)
{
case 1: exp = inputValue(); break;
case 2: exp = inputVariable(); break;
case 3: exp = inputOperation (); break;

}

return exp;

}

In this case the inputOperation() method will typically prompt the user for an operation
and then recursively call this method for the left- and right operands of the operation.

23.3.4 Related Patterns

Template Method
The template method and the interpreter design patterns are the only two Gamma:1995
behavioural patterns that uses inheritance as its basic strategy to achieve its pur-
pose. All other Gamma:1995 behavioural patterns uses delegation.

Composite
Interpreter is an application of the Composite pattern. It ads specific behaviour to
the composite structure namely to interpret the elements of the composite structure.
Note that is more specific than just an operation distributed over a class hierarchy
that uses the Composite pattern. It is specifically aimed at dealing with problems
that are specified in terms of grammars.

Flyweight
Both Flyweight and Interpreter share symbols. Interpreter share terminal symbols
within the abstract syntax tree.

Visitor
Both Interpreter and Visitor adds behaviour to a composite structure. Where in-
terpreter adds a simplistic behaviour, visitor allows for more generic and adaptable
behaviour. The similarity between these patterns is deep. The operations of an
interpreter can always be refactored into interpreter visitors.

State
The interpreter design pattern and the state design pattern are different ways to
solve interpretation. Where the interpreter pattern provide a way to interpret parse
trees directly while it is possible to first transform a parse three into a state machine
and then applying the state pattern to solve the same problem.

23.4 How to implement the interpreter pattern

The implementation of the interpreter pattern is useful to achieve one of the following:

e to verify if a given sentence complies with the grammar
e to generate a sentence that complies with a grammar

e to determine a value of a sentence that complies with a grammar

In this section we explain the process of implementing this pattern at the hand of an
example that verifies if a given sentence complies with a language. In Section we
present an example that applies this pattern to generate a sentence that complies with
a grammar. Lastly, in Section [23.6] we present a tutorial that guides the reader through
the process to implement the pattern to calculate the value of a mathematical expression.

23.4.1 Define a grammar

The interpreter pattern is only applicable if the solution to the problem at hand can be
expressed in terms of a formal grammar. If the problem offers a justifiable return on
investment one can define a grammar and then build an interpretation engine using this
pattern to process the solutions.

23.4.2 Use the grammar to design the system

The Interpreter pattern uses a class to represent each grammar rule. Symbols on the
right-hand side of the rule are instance variables of these classes. Thus the grammar
rule alternation ::= expression ’|’ expression, should be represented in the de-
sign with the classes shown in Figure [2|

sy Pressin Do [EXpression [expressiond

Alternation
—expressiond @ Expression

— -expressionB @ Expression -

Figure 2: Classes representing alternation ::= expression ’|’ expression

23.4.3 Implement the design using the grammar

The constructor of each class should instantiate its instance variables. This is typically
done by implementing only one constructor that requires parameters to specify the values
for all its instance variables. The following is an example of the constructor of this
Alternation class assuming the Expression class implements an assignment operator.

Alternation :: Alternation (Expression a, Expression b)

expressionA = a;
expressionB = b;

The interpret () method of each class should be implemented. For example the interpret ()
method of an application that verifies if a sentence complies will return a boolean value.

It will return true if the input matches, and will return false if it does not. Assume the the
Alternation class given above must check if the input matches any of its alternatives.
Below is the implementation of this method. Note how the interpretation is delegated to

its instance variables.

bool Alternation :: interpret (string input){
bool a = expressionA .interpret (input);
bool b = expressionB.interpret (input);
return a || b;

23.5 Example

The interpreter pattern is the translation of a grammar to an implementation. Usually
grammars are associated with parsing and interpretation of parsed text. Most examples
illustrating the interpreter pattern includes a parser and illustrates the pattern at the
hand of grammars that identify expressions that are parsed before they are interpreted.
It is, however, clearly stated in [2] that the pattern does not include parsing.

23.5.1 The problem

For our example we chose an example given by Huston [3]. It does not include the parsing
of expressions. We deem it a suitable example to illustrate the design of a grammar and
the translation of such grammar to an implementation. It is an expression of the well
known Towers of Hanoi puzzle in terms of a grammar that is used to implement a solution
of the problem.

The Towers of Hanoi puzzle consists of three pegs and a number disks with different sizes.
The goal is to reposition the stack of disks from one peg to another peg by moving one
disk at a time, and, never placing a larger disk on top of a smaller disk. An interactive
example to solve the puzzle is available at [1]. This is a classic problem for teaching
recursion in data structures courses.

Here a language is designed that characterizes this problem domain. The language is then
mapped to a grammar, and the grammar is implemented with an interpretation engine
that apples the interpreter patten. This application can now be applied to solve the
puzzle. The implementation writes the solution in terms of the moves required to achieve
the required end state.

23.5.2 A language

The language required to describe a solution can be defined in terms of moves. A simple
move is described in terms of the source peg and the destination peg. Executing a move
described as A B, means the top disk on peg A is moved to peg B. It will be valid if peg
B is empty or the top disk on peg B is larger than the top disk on peg A.

—_

O © 00O Ui Wik -

A complex move is defined as the combination of moves needed to move a stack of n disks
from one peg to another. Executing this move can be described as n A B. Such move is
valid if the bottom disk of top n disks on peg A is smaller than the top disk on peg B.

Every solution to move n disks from one peg to a specified peg can be now described in
terms of a complex move, followed by a simple move, followed by a complex move. For
example the complex move 4 A C can be refined as 3 A B followed by A C followed by
3 B C. The logic is moving the top 3 disks out of the way, move the bottom of the four
disks to its required destination, and thereafter move the top three disks to the required
destination.

23.5.3 A grammar
In the above description of the solution to the general problem we identified types of

moves and a production rule. Assuming the pegs are labelled A, B and C, this can be
formulated in the following grammar to define the language to describe the solution:

Move ::= complexMove | simpleMove

simpleMove ::= pegl peg2

complexMove ::= size pegl peg2

size pegl peg2 ::= size2 pegl pegd, pegl peg2, size2 peg3 peg2
1 pegl peg2 ::= pegl peg2

pegl := A | B | C

peg2 ::= (A | B | C) and !(pegl)

pegd ::= (A | B | C) and !(pegl) and !(peg2)

size ::= (an integer)

size2 ::= (value of (size — 1))

Rules 1, 2 and 3 are general rules while rules 6 to 10 are specific rules stating the allowable
values and relationships between terminal symbols. Rules 4 and 5 are production rules
specifying how a complex move can be expressed in terms of other moves. It includes
detail about the values and relationships between the terminal symbols comprising the
expression. The following expressions are a generalisations of these rules:

complexMove ::= complexMove, simpleMove, complexMove
complexMove ::= simpleMove

23.5.4 Mapping the grammar to a design

When mapping the grammar to a design. One look at the general rules and their relation
to one another. You will notice that the classes in the class diagram in Figure[3|correspond
with the named items (Move, simpleMove and complexMove) in the grammar defined in
Section [23.5.3] The other items like the peg names and the values in the variable called
size in the given grammar feature as instance variables of these classes.

The design represents the abstract rules defined in the given grammar. These are the
abstract versions of rules 1 to 5. The application of other rules specifying the detail
about peg names and values and their relation to one another will be observed in the
implementation.

Map per
-pegMap : map<string, string>
+Mapper{p0 : string, pl : string, p2 : string)
+getContext() : map<string, string>

Client

0

-postMou\e_ Move
coreMove #source : string
M VE ol#tdestination - stri ng
-pegMa -

pegiiap preMove |3 Movels : string, d - string)
+expand() : void

i

Q

Complex Simple
-height : int +Simple(source : string, destination : string)
-pegMap : map<string, string> +expand() : void
-preMove @ Mowve*

-coreMove @ Mowve*
-postMove : Move®

+Complexih : int, src : string, dst : string, pegs : map<string, string=)
+expandi) : void

Figure 3: Class design of the grammar in section [23.5.3

The following table identifies of these classes as participants of the interpreter design
pattern:

Participant Entity in application
Abstract Expression Move
Terminal Expression Simple
Non-Terminal Expression | Complex
Context map
Client Client
| interpret() | expand()

23.5.5 Implementing the design

Client

[]

[J

[]
Mapper

[
map

[

[]
Move

[

[]

[]
Simple

[

[
Complex

This client prompts the user to specify names for the source peg, the destination
peg and an auxiliary peg. It also prompts the user for the number of disks that
is to be moved from the specified source peg to the required destination peg.

The input data is passed to the Mapper class to compile the context (see later).

The client is now able to produce the solution to the puzzle for the given
context in a single call to the expand () method of the complex move to move
the entire stack of disks from the source disk to the destination disk.

The Mapper class seems as if it should act as the context. However, in this
implementation it is merely a helper class to construct the context.

In this implementation the map serves as context. It is a lookup table that
specifies the name of the spare peg when the source and destination pegs are
known.

We deviate from the design of the interpreter pattern in how we use the context.
The design of the interpreter pattern suggests that the context be passed as
parameter to the interpret () method. However, in this implementation this
context is also needed by the constructor of the Complex class. It is also not
used by the Simple class. It was therefore decided to pass it to the constructor
of the Complex class and keep it as an instance variable of a Complex object.

This is the interface to all possible moves.
It defines the virtual method expand () that interprets the specific move.

Since all moves in the puzzle specifies a source peg and a destination peg. It
was decided to locate these as instance variables of a move.

This class represents a terminal expression. This is because it provides a con-
crete move of one disk from one peg to another.

It implements the virtual method expand() that interprets the specific move.
This method contains a cout statement describing the move. In other more
typical implementations if the interpreter pattern the interpret() method
will typically return single result.

This is the heart of the interpreter pattern. It is specified that a class should be
implemented for each of the production rules in the grammar. In this example
rule 4 of the grammar defined in Section is the only production rule.
Therefore, we implement only this one Non-Terminal expression.

10

e The constructor applies the associated production rule to create its sub-ordinates
as instance variables of the class.

e The abstract version of the language rule is reflected in the definition of the
instance variables of this class.

e The detailed version of this rule and its consequences are applied to construct
these instance variables when an object of this class is instantiated.

e As prescribed in the interpreter pattern, the implementation of the expand()
method simply calls the expand () methods of its instance variables.

The C** code of this example can be found in the tarball called L30_Interpreter.tar.gz.

23.6 Tutorial

We present an example as a tutorial. We only provide partial solutions for the the
development steps and leave the completion of these steps to the reader.

23.6.1 The problem

We need to write an application that can evaluate mathematical expressions written in
postfix notation. Only binary operations +, - and * with their usual interpretation are
supported. The operands for the operations may only be integers or variable names.

23.6.2 A grammar
The language for mathematical expressions is well established. In this context we will

allow variable names to be strings of any length consisting of only alphabetical characters.
The following rules are part of our grammar:

expression ::= sum | difference | product | variable | number
sum ::= expression expression '+’
number ::= int

The last rule simply specifies the data type of this terminal symbol. The reader is invited
to write rules for the compound expressions difference and product and also provide a
rule for the terminal of type variable.

The eager reader can also add rules for the integer operations quotient with operator /
and mod with operator %.

23.6.3 Mapping the grammar to a design

When mapping the grammar to a design, each grammar rule is represented by a class.

There should be a class for each terminal symbol. In this example they are variable and
number. These classes are directly derived from the abstract class Expression because

11

they appear in the right hand side of the first rule indicating that they are kinds of expres-
sions. Note in Figure [4] that the Number class representing number contains an instance
variable of the type as specified by the grammar rule. It also implements a constructor
and the interpret () method. The reader is invited to add a class representing variable
to the class diagram in Figure

s el Expression
imerpret{ : map<string, imt>) - int

i

-leftOperator

-rightQperator

Q

Number Bas icOperation
-number : int -leftOperator : Expression®
+Number(n : int) -rightOperator : Expression®

BasicOperation(left : Expression *, right : Expression *)
#executefopl - int, op? Dint) :int

[ﬁ‘ Sum

+Sumileft - Expression *, right : Expression *)
#executefopl - int, op? “im) :int

Figure 4: Class design of the grammar in section [23.6.2

There should also be a a class for each production rule. The class Expression repre-
sents the first rule. Classes that should derive from it are the classes representing sum,
difference, product, textttvariable and number. In our example we have observed that
all the classes representing operations will be similar to the class representing sum. There-
fore, we have defined an abstract interface for them. They will all have two operands that
may be any kind of expression. We have defined these variables in this abstract interface.
This abstract interface must, similar to the classes representing terminals, implement a
constructor and the interpret () method. In this case we have implemented it as a tem-
plate method that will delegate the core of the operation to its derived class using the
virtual execute () method.

The reader is invited to add classes for the rules for the compound expressions that he/she
added to the grammar.

23.6.4 Implementing the design

When implementing the design one need to have an abstract syntax tree of the expression
that needs to be interpreted, compile the context needed for interpretation and inplement
the contsructors as well as the interpret method in each of the classes in the design.

Syntax Tree

The compilation of the syntax tree is usually done by implementing a parser. The imple-
mentation of a parser or other means of compiling the syntax tree is left as an exercise.

12

Hint: see Section 23.3.3|

Context

In this example the context entails the values of the variables. It is advised to define the
context as a map<string, int>. A pair<string, int> can be inserted to this map for
each variable that is encountered in the expression. This will provide a lookup table that
can be used in the implementation the interpret method of the Variable class. Since the
creation of this context is closely related to the process to build the abstract syntax tree
this part of the implementation is left to the reader.

Constructors

Each constructor needs to instantiate its instance variables as specified by the class design.
Here we list the constructors of all the classes in Figure [4] that has instance variables. The
implementation of the constructors of the rest of the classes are left for the reader to
complete.

Number : : Number (int value): number(value)

{}

BasicOperation :: BasicOperation (Expression* left , Expression* right)
{

leftOperator = left;

rightOperator = right;

}

Sum::Sum(Expression* left , Expressionx right)
BasicOperation (left , right)
{}

Interpret method

Each class has to implement the interpret () method. It is assumed that the context is
passed as parameter to the interpret method. Typically the interpret method of terminal
symbols simply return its value while composite nodes will recursively call the interpret
method of its instance variables. Here we list the implementation of this method of the
Number and BasicOpertion classes in Figure[das well as the execute () method of the Sum
class to illustrate how this can be achieved. The implementation of the interpret/execute
methods of the rest of the classes are left for the reader to complete.

int Number::interpret(map<string , int>)

{
}

return number;

int BasicOperation::interpret (map<string , int> variables)

{

13

return execute(leftOperator—interpret (variables),
rightOperator—>interpret (variables));

}

int Sum::execute(int left , int right)

{
}

return left + right;

References

[1] Anonymous. Tower of hanoi. http://www.mathsisfun.com/games/towerofhanoi.
html edited by Rod Pierce. [Online: Accessed 3 October 2011].

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[3] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

14

http://www.mathsisfun.com/games/towerofhanoi.html
http://www.mathsisfun.com/games/towerofhanoi.html
http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/
http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/

	Introduction
	Interpreter Design Pattern
	Identification
	Structure
	Participants
	Problem

	Interpreter pattern explained
	Improvements achieved
	Situations where other solutions may be more suitable
	Common Misconception
	Related Patterns

	How to implement the interpreter pattern
	Define a grammar
	Use the grammar to design the system
	Implement the design using the grammar

	Example
	The problem
	A language
	A grammar
	Mapping the grammar to a design
	Implementing the design

	Tutorial
	The problem
	A grammar
	Mapping the grammar to a design
	Implementing the design

	References

