
Department of Computer Science

Tackling Design Patterns
Chapter 25: Façade Design Pattern
Copyright c©2016 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

25.1 Introduction . 2

25.2 Façade Design Pattern . 2
25.2.1 Identification . 2
25.2.2 Problem . 2
25.2.3 Structure . 2
25.2.4 Participants . 3

25.3 Façade Pattern Explained . 3
25.3.1 Improvements achieved . 3
25.3.2 Practical examples . 3
25.3.3 Common Misconceptions . 4
25.3.4 Related Patterns . 4

25.4 Implementation Issues . 5
25.4.1 An abstract façade . 5
25.4.2 Configurable façade . 5

25.5 Example . 5

References . 8

1

25.1 Introduction

It is generally a good idea to build systems that are generic and reusable. The result
of such practice is the development of systems that include a wide variety of versatile
functions. Unfortunately, while improving the reusability of code in this manner, the
complexity of the code increases and so does the ease of use. The Façade pattern can
be applied to hide some of the complexity of such systems and to simplify the use of the
system for commonly needed functions without compromising the usability of functions
provided by subsystems that are not necessary commonly used.

The application of most design patterns result in more and smaller classes which are
aimed at making life easy for people who need to change the code. A negative side effect
of this practice is that the code becomes harder to use for clients that need not change
the code. The Façade pattern provides an interface for clients who only need to use the
code, making life easier for them by providing a simplified interface through which they
can communicate with the subsystems in a more predictable manner.

25.2 Façade Design Pattern

25.2.1 Identification

Name Classification Strategy
Façade Structural Delegation
Intent

Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use. ([2]:185)

25.2.2 Problem

A segment of the client community needs a simplified interface to the overall functionality
of a complex subsystem [3].

25.2.3 Structure

Figure 1: The structure of the Façade Design Pattern

2

25.2.4 Participants

Façade

• Knows which subsystem classes are responsible for a request.

• Delegates client requests to appropriate subsystem objects.

Subsystem classes

• Implements subsystem functionality

• Handle work assigned by the Façade object.

• Have no knowledge of the façade and perform operations independent of the
façade.

25.3 Façade Pattern Explained

25.3.1 Improvements achieved

• Reduce coupling between clients and the system
It shields clients from subsystem components, thereby reducing the number of ob-
jects that clients deal with and making the subsystem easier to use

• Promotes weak coupling between subsystems
Weak coupling lets you vary the components of the subsystem without affecting
its clients. Facades help layering a system and the dependencies between objects
thereby reducing compilation dependencies and promoting portability of the code.

25.3.2 Practical examples

The Façade is applied to automate a process that consist for a sequence of steps where
the different steps in the process may be executed by different subsystems in different
classes.

If a variable process is executed in the same way every time in certain identifiable
situations it justifies a Façade.

There are many situation where the Façade design pattern can be applied. The following
are a few practical examples:

• Automate the compilation of programs to perform the steps of scanning, parsing,
compiling and linking with a single instruction.

• Provide a vacation planner interface that links with subsystems for example accom-
modation planning, travel planning, site seeing planning, entertainment planning,
etc.

• Provide an installation wizard to install a large system.

• Provide an automated procedure to make a backup of the data in a system.

3

• Provide a wizard in an application program such as a word-processor to semi-
automatically perform a complicated procedure such as creating a table.

• Provide an automated online order procedure for identified customers [1].

• Provide an automated procedure to prepare the roll-over of a system at the end of
a logical cycle. For example a financial system at the end of a financial year or a
student registration system at the end of an academic year.

25.3.3 Common Misconceptions

• The Façade is not any automated process. To be an implementation of the Façade,
the steps in the automated process should still be available as individual functions
that can be performed without the aid of the Façade. It is important to notice that
the façade should be implemented in such a way that It doesn’t prevent applications
from using subsystem classes if they need to. Thus the clients must have the freedom
to choose between ease of use (using the façade) and generality (bypassing the
façade).

25.3.4 Related Patterns

Adapter
Façade is in a sense a huge object adapter that simultaneously adapts a number of
classes with the intent to simplify communication with those classes. While both the
façade and the adapter my wrap any number of classes, their intent is different. The
adapter wraps to provide the expected interface, while the façade wraps to provide
a simplified interface.

Template Method
Façade is in a sense a huge template method that defines the skeleton of an algo-
rithm for a process that is automated. However, instead of deferring some steps to
subclasses, it delegates steps to the different classes comprising a system.

Mediator
Mediator is similar to Façade in that it abstracts functionality of existing classes.
However, Mediator’s purpose is to abstract arbitrary communication between col-
league objects, often centralizing functionality that doesn’t belong in any one of
them. A mediator’s colleagues are aware of and communicate with the mediator
instead of communicating with each other directly. In contrast, a facade merely
abstracts the interface to subsystem objects to make them easier to use; it doesn’t
define new functionality, and subsystem classes don’t know about it.

4

25.4 Implementation Issues

There are various enhancements that can be considered when implementing the façade
design pattern. We mention two that were suggested by [2]:

25.4.1 An abstract façade

The coupling between clients and the subsystem can be reduced even further by mak-
ing Façade an abstract class with concrete subclasses for different implementations of
a subsystem. Then clients can communicate with the subsystem through the interface
of the abstract Facade class. This abstract coupling keeps clients from knowing which
implementation of a subsystem is used.

25.4.2 Configurable façade

To enhance the usability of a façade, it can be implemented in a way that allows the
client to configure a Facade object with a selection of different subsystem objects. Then
the façade, can be cutomised by replacing one or more of its subsystem objects.

25.5 Example

Figure 2: Class Diagram a system before implementing a façade

Figure 2 is a class diagram of a system implementing the RSA Encryption Algorithm.
The client prompts the user for an input string. This string is encrypted and decrypted

5

using a number of methods provided in a number of inter-related classes. The following
is the code of the client1:

#include <c s t d l i b >
#include <vector>
#include <iostream>
#include <s t r i ng>

#include ” Big Intege r . h”
#include ” B i g I n t e g e r U t i l s . h”
#include ” DataConverter . h”
#include ” Pr imal i tyAlgor i thms . h”
#include ”ModAlgorithms . h”
#include ” Div i s ionAlgor i thms . h”

using namespace std ;

void i n i t i a l i z e K e y s
(B ig Intege r &p , B ig Intege r &q , B ig Intege r &n ,

B ig Intege r &d , B ig Intege r &e) ;

vector<BigInteger >∗ encrypt
(s t r i n g m, B ig Intege r n , B ig Intege r d) ;

s t r i n g decrypt
(vector<BigInteger >∗ c , B ig In tege r p ,

B ig Intege r q , B ig Intege r d) ;

s t r i n g getInput () ;

int main ()
{

srand ((unsigned) time (NULL)) ;
s t r i n g input = getInput () ;

B ig Intege r p , q , n , d , e ;
i n i t i a l i z e K e y s (p , q , n , d , e) ;

vector<BigInteger >∗ cypherText = encrypt (input , n , e) ;
cout << ”\nEncrypted data : ” ;
for (unsigned i = 0 ; i < cypherText−>s i z e () ; ++i)

cout << cypherText−>at (i) << ” ” ;
cout << endl ;

s t r i n g output = decrypt (cypherText , p , q , d) ;
cout << ”\nDecrypted s t r i n g : ” << output << endl ;

}

1The detailed implementation of the methods declared in this client is omitted here

6

Figure 3: Class Diagram a system after implementing a façade

We will now illustrate the creation of a façade to handle encryption and decryption, and
how it can be used by this client. Figure 3 is a class diagram of this system when using
this façade.

The façade we will create here has the purpose of hiding the detail needed by the encrypt
and decrypt procedures from the client. The details like the generation of the keys used in
the encryption are irrelevant to the user of the encryption functions. Therefore it would
be a good idea to include the keys used by these methods the façade class and to provide
an interface with encrypt and decrypt methods requiring only the strings to be passed as
parameters. The following is the definition (h-file) of a proposed façade class:

#ifndef FACADE
#define FACADE

#include <c s t d l i b >

#include ” Big Intege r . h”
#include ” B i g I n t e g e r U t i l s . h”
#include ” DataConverter . h”
#include ” Pr imal i tyAlgor i thms . h”
#include ”ModAlgorithms . h”
#include ” Div i s ionAlgor i thms . h”

class Facade
{

public :
Facade () ;
vector<BigInteger >∗ encrypt (s t r i n g m) ;

7

s t r i n g decrypt (vector<BigInteger >∗ c) ;
private :

B ig Intege r p , q , n , d , e ;
} ;
#endif

Note that this file has #include statements for all classes. It also defines instance vari-
ables BigInteger p, q, n, d and e. The encrypt and decrypt methods are declared
with less parameters and the initializeKeys() method is removed. The implementation
of this class should now contain the detailed implementation of the mentioned methods.

The implementation of the encrypt and decrypt methods should be the same as it was
in the original client. Except that the values of p, q, n, d and e need not be passed as
parameters. They are now directly available as instance variables.

The constructor has to initialize the keys. Therefore, the body of the initializeKeys()

method should become the body of the constructor. The statement to initialise the
random number generator; srand ((unsigned)time(NULL)); can also be executed here.

The client code can now be simplified by applying this this façade. The following is a
listing of the simplified main.C

#include ”Facade . h”

s t r i n g getInput () ;

int main ()
{

Facade facade ;
s t r i n g input = getInput () ;

vector<BigInteger >∗ cypherText = facade . encrypt (input) ;
cout << ”\nEncrypted data : ” ;
for (unsigned i = 0 ; i < cypherText−>s i z e () ; ++i)

cout << cypherText−>at (i) << ” ” ;
cout << endl ;

s t r i n g output = facade . decrypt (cypherText) ;
cout << ”\nDecrypted s t r i n g : ” << output << endl ;

}

Note the following:

• The statement srand ((unsigned)time(NULL)); is no longer part of this client.

• It is sufficient to include only the Façade.h file. The other files that needs to be
included are implicitly included because they are included in this .h file.

• To be able to call the methods provided in the Façade, a variable of type Facade is
instantiated and used to call the encrypt and decrypt methods.

8

References

[1] Judith Bishop. C# 3.0 design patterns. O’Reilly, Farnham, 2008.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[3] Vince Huston. Design patterns. http://www.cs.huji.ac.il/labs/parallel/Docs/
C++/DesignPatterns/, n.d. [Online: Accessed 29 June 2011].

9

http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/
http://www.cs.huji.ac.il/labs/parallel/Docs/C++/DesignPatterns/

	Introduction
	Façade Design Pattern
	Identification
	Problem
	Structure
	Participants

	Façade Pattern Explained
	Improvements achieved
	Practical examples
	Common Misconceptions
	Related Patterns

	Implementation Issues
	An abstract façade
	Configurable façade

	Example
	References

