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Abstract

We present implementations of parallel DFA run meth-
ods. We compare the parallel methods with well known se-
quential versions of these methods and find whether and un-
der what conditions is worthy to use the parallel methods of
simulation of run of finite automata.

We introduce the paralell DFA run methods for general
DFA, which are universal, but due to the dependency of sim-
ulation time on the number of states|Q| of automaton be-
ing run, they are suitable only for run of automata with the
smaller number of states.

On the other hand, if we apply some restrictions to
properties of automata being run, we can reach the lin-
ear speedup compared to the sequential simulation method.
First, we show methods benefiting fromk-locality that al-
lows optimum parallel run of exact and approximate pattern
matching automata.

Finally, we show the results of experiments conducted
on two types of parallel computers (Cluster of workstations
and Symmetric shared-memory multiprocessors).

1 Introduction

Finite automata (also known asfinite state machines)
are the formal system for solving many tasks in Computer
Science. The finite automata run very fast and there ex-
ists many efficient implementations (e.g., [Tho68, NKW05,
NKW06]).

The increase of computation power of available comput-
ers is based not only on the increase of CPU frequency
but also on other modern technologies. The finite au-
tomata implementations have to consider these technolo-
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gies. A recent paper [Hol08] provides a survey of vari-
ous finite automata implementations considering CPU (like
[NKW05, NKW06]). One of the latest technologies used is
a usage of multiple CPU core. The speed of sequential run
of the finite automata cannot follow the increase of compu-
tation power of computers that is mostly based on dual-core
and quad-core processors. Therefore a demand on parallel
run of the finite automata strenghtens.

The parallel run of deterministic finite transducer was
first described in [LF80]. We implement deterministic finite
automata run on two parallel computer architectures. Since
finite automata are very often used in the approximate and
exact pattern matching, we also describe methods of par-
allel simulation on these automata exploiting their special
properties—they are synchronizing automata.

2 Finite Automata

Nondeterministic finite automaton(NFA) is a quintuple
(Q, Σ, δ, q0, F ), whereQ is a finite set of states,Σ is a set
of input symbols,δ is a mappingQ× (Σ ∪ {ε}) 7→ P(Q),
q0 ∈ Q is an initial state, andF ⊆ Q is a set of final states.
Deterministic finite automaton(DFA) is a special case of
NFA, whereδ is a mappingQ × Σ 7→ Q. We defineδ̂ as
an extended transition function:̂δ(q, ε) = q, δ̂(q, ua) =

p ⇐⇒ δ̂(q, u) = q′, δ(q′, a) = p, a ∈ Σ, u ∈ Σ∗.
A configuration of DFAis a pair(q, w) ∈ Q× Σ∗. The

initial configuration of DFA is a pair (q0, w) and afinal
(accepting) configuration of DFAis a pair(qf , ε), where
qf ∈ F . A move of DFAM = (Q, Σ, δ, q0, F ) is a re-
lation ⊢M⊆ (Q × (Σ∗ \ {ε})) × (Q × Σ∗) defined as
(q1, aw) ⊢M (q2, w), whereδ(q1, a) = q2, a ∈ Σ, w ∈ Σ∗,
q1, q2 ∈ Q. The symbol⊢∗M denotes a transitive and reflex-
ive closure of relation⊢M .

In the previous definition we talk aboutcompletely de-
fined DFA, where there is for each source state and each
input symbolexactly onedestination state defined. How-



ever, there is alsopartially defined DFA, where there is for
each source state and each input symbolat most onedes-
tination state defined. The partially defined DFA can be
transformed to completely defined DFA introducing a new
state (so called sink state) which has a self loop for each
symbol ofΣ and into which all non-defined transitions of
all states lead.

3 DFA run

3.1 Sequential DFA run

The sequential run of DFA uses tha fact that there is al-
ways just one state1 active during the computation.

Algorithm 3.1 (Basic sequential run of DFA)
Input: A transition tableδ and a setF of final states of
DFA, input textT = t1t2 . . . tn, q is active state,q0 is
initial state
Output: Information whether DFA accepts whole input
text or not
Method:

j ← 0
q ← q0

while j ≤ n do
q ← δ[q, tj ]
j ← j + 1

endwhile

if q ∈ F then
write (‘The automaton accepts the text.’)

else
write (‘The automaton does not accept the text.’)

endif

Note that the Algorithm 3.1 (run of accepting automa-
ton) can be used only for purposes where we need to know if
whole input text is accepted by automatonM or not. Some-
times an information about all reached final states is nec-
essary, so Algorithm 3.2 (run of pattern matching automa-
ton) is a modification solving this situation. This algorithm
differs in position ofif statement, so everytime the automa-
ton reaches a final state, an information about this state and
the position of the last read symbol is written out. This
kind of finite automaton is widely used in pattern matching
[Mel95, Mel96, Hol96, HIMM01].

Theorem 3.1
Let DFA M = (Q, Σ, δ, q0, F ) is run by Algorithm 3.1 or

1In this text, we suppose run of completely defined automaton.Any
partially defined automaton can be converted to the equivalent complete
one as mentioned in Section 2.

Algorithm 3.2 (Basic sequential run of DFA—pattern
matching version)
Input: A transition tableδ and a setF of final states of
DFA, input textT = t1t2 . . . tn, q is active state,q0 is
initial state
Output: Information about all reached final states
Method:

j ← 0
q ← q0

while j ≤ n do
q ← δ[q, tj ]
j ← j + 1
if q ∈ F then

write (‘Final stateq reached at positionj.’)
endif

endwhile

endif

3.2. Then it runs in timeO(n), wheren is the length of the
input text. Space complexity isO(|Q||Σ|).

Proof
Algorithm 3.1 or 3.2 has onewhile cycle having the num-
ber of iterations equal to the length of the input text. Inside
this loop, there is only retrieving of corresponding transi-
tion δ in the transition table. We expect transition table
implemented as acompletely defined transition table(for
completely defined DFA), which means it is implemented
as two-dimensional array indexed by states of DFA in first
dimension and by characters of input alphabet in the second
one. Finding the corresponding state in this transition table
has complexityO(1), so the total complexity of algorithms
defined above isO(n).
Space complexity is given by size of transition table which
contains|Q| × |Σ| values, where|Σ| is the size of the input
alphabet. 2

3.2 DFA run on a COW

In this section we describe a method of parallel run of
DFA on a cluster of workstations (COW). Let us remind
that on COW-based parallel computersmessage passingis
used for exchanging data among processors.

3.2.1 DFA run method

When running DFA sequentially on input textT of sizen,
we start in one initial state and aftern steps we reach a state
from setQ.



The basic idea of run of DFA on a COW is to divide the
input text among all processors, run the automaton on each
of them, and then join all subresults.

Let us have an DFAM = (Q, Σ, δ, q0, F ) and cluster of
workstations with|P | processors. The input text is sliced
into |P | partsT1, T2, . . . T|P | using block data decomposi-
tion. On every partTi of input text, DFA is run and after
reading all symbols some state is reached.

A problem comes with joining of subresults. We always
need to connect the last active state of processorPi to the
first active state of processorPi+1 (so that the initial state of
processorPi+1 is the last active state ofPi). The problem
is that the last active state of processorPi is known after
reading whole partTi of input text. If eachPi+1 would
need to wait for the last active statePi and then process part
Ti+1, we reach sequential complexity (or even worse be-
cause sending results between processors is very expensive
operation).

The way, how to solve this problem, is to consider all
states (one after other) as initial states and for each of them
to find corresponding last active state. After doing this,
we have got mappings of oneinitial state to one last ac-
tive state. This mapping can be simply reduced by parallel
binary reduction [LF80].

Algorithm 3.3 shows us a way, how to run DFA on a
COW using basic DFA run. We suppose, that:

• each processor has built the transition tableδ,

• each processor has the set of final statesF ,

• processors are ranked bycontinuous linear sequence
of IDs starting with zeroand each of them knows its
own as a value of variable2 Pi,

• processorP0 knows which state is the initial state (q0),

• each processor has access to its part of the input text
(see below),

• at least two processors execute this algorithm,

• the number|P | of processors executing the algorithm
does not change during algorithm execution and all
processors know the value.

We implement a mapping ofpossible initial statesto
possible last active statesas vectorL (of size|Q|):

LPi
=











l0
l1
...

l|Q|−1











, (1)

2This variable is often named ‘myrank’ in MPI programs.

wherelj , 0 ≤ j < |Q|, is the last active state assuming that
processorPi starts in statej and processes partTi of the
input text (i.e.,̂δ(qj , Ti) = lj).

The setF of final states is implemented as bit vectorF :

F =











f0

f1

...
f|Q|−1











, (2)

where bitfj = 1, if qj ∈ F , or fj = 0, otherwise.
We also need to implement a vectorR in which we

store information about the automaton run. It depends
on our requirements what kind of information we want to
store. We can store a complete sequence of configurations
(q0, w) ⊢∗M (qf , ε), but for our purposes (without loss of
generality) we store only a count of final states reached.
Each elementri of this vector contains a number of reached
final states assuming initial stateqi:

R =











r0

r1

...
r|Q|−1











(3)

Finally, transition functionδ is implemented as a transi-
tion tableT of size (|Q| × |Σ|), wherea ∈ Σ andqj ∈ Q
such thatqj = δ(qi, a):

T [i, a] = qj , qj ∈ Q (4)

3.2.2 Distributing and finishing partial results

After running DFA in parallel, each processorPi has built
mappingLPi

(possible initial stateto possible last active
state) in local memory. In order to finish parallel DFA run,
we need to join these mappings (reduce results from proces-
sors).

There are two possible methods, how to reduce data from
processors. The first method is based on trivial reduction.

This reduction is based on fact, that only the processor
P0 knows the initial state of automatonM . Hence, only
the processorP0 can send the last active statel0 and the
number of reached final statesr0 to the next processorP1.
This processor uses incoming valuel0 to determine which
of possible last active states is correct and sends it to the
next processor as an active start state. Incoming valuer0

is added to a corresponding value and also sent to the next
processor.

If we want to use the binary reduction, we do not start
from the first processor, because more reductions are made



Algorithm 3.3 (Basic run of DFA on a COW)
Input: A transition tableT , set of final statesF , mapping
from possible initial state to possible last visited stateL
and a setR of possibly reached final states of DFA, input
textT = t1t2 . . . tn and initial stateq0

Output: Output of run of DFA
Method: SetS of active states is used, each processor has
its unique numberPi, number of processors is|P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← ⌊Pi

n
|P |⌋

end position← ⌊(Pi + 1) n
|P |⌋ − 1

for k ← 0, 1 . . . |Q| − 1 do
L[k]← k /∗ intitialize vectorL ∗/
R[k]← 0 /∗ intitialize vectorR ∗/

endfor

while j ≤ end position do
for i← 0 . . . |Q| − 1 do
L[i]← T [L[i], tj ] /∗ evaluate transition∗/
if L[i] ∈ F then
R[i]←R[i] + 1

endif
endfor
j ← j + 1

endwhile

endfor

MPI Barrier () /∗ wait for the slowest processor∗/

result← perform parallel reduction()
/∗ see Binary 3.6 or Trivial 3.4 reductions∗/

in one parallel step. This makes reduction more compli-
cated, because not only one value needs to be sent between
processors, but complete vectorsL andRmust be reduced.
We define binary operator⊕DFA, which makes one mapping
LPiPj

from mappingsLPi
andLPj

, wherePi andPj are
processors performing actual step of binary reduction. This
newly created mappingLPiPj

is built this way:

LPiPj
=











LPj
[LPi

[0]]
LPj

[LPi
[1]]

...
LPj

[LPi
[|Q| − 1]]











. (5)

This vectorLPiPj
is either complete result of binary re-

duction or will be used in next reduction operation. At the

Algorithm 3.4 (Parallel trivial reduction for Algo-
rithm 3.3)
Input: All variables and results of Algorithm 3.3 and tem-
porary variablesLtemp,Rtemp

Output: Reduced results stored in memory ofP0

Method: All processors perform this reduction, communi-
cation is performed sequentially in order to reduce the size
of messages being sent.

for all P0 do in parallel
MPI Send(to P1 dataR[q0])
MPI Send(to P1 dataL[q0])

endfor

for all P1, P2, . . . P|P |−2 do in parallel
Rtemp ← MPI Recv(fromPPi−1)
Ltemp ← MPI Recv(fromPPi−1)
R[Ltemp]← R[Ltemp] +Rtemp

MPI Send(to PPi+1 dataR[Ltemp])
MPI Send(to PPi+1 dataL[Ltemp])

endfor

for all P|P |−1 do in parallel
Rtemp ← MPI Recv(fromP|P |−2)
Ltemp ← MPI Recv(fromP|P |−2)
MPI Send(to PP0

dataR[Ltemp])
MPI Send(to PP0

dataL[Ltemp])
endfor

for all P0 do in parallel
Rtemp ← MPI Recv(fromP|P |−1)
Ltemp ← MPI Recv(fromP|P |−1)
return(Rtemp,Ltemp)

endfor

end of the binary reduction we have got mappingLPiPj
,

wherei = 0 andj = |P | − 1, hence value ofLPiPj
[q0] is

the last active state of run of automatonM .
VectorR is reduced similarly:

RPiPj
=











RPi
[0] +RPj

[LPi
[0]]

RPi
[1] +RPj

[LPi
[1]]

...
RPi

[|Q| − 1] +RPj
[LPi

[|Q| − 1]











. (6)

We can see, that we need to have also vectorL to reduce
vectorR. This is the reason why it is necessary to reduce
both vectors within one reduction operation.

Algorithm 3.5 shows possible implementation of this op-
erator as a function.

Theorem 3.2
The DFA run method shown in Algorithm 3.3 using trivial



Algorithm 3.5 (Binary reduction operator for Algo-
rithm 3.6)
Input: vectorsLPi

andRPi
from processorPi and vectors

LPj
andRPj

from processorPj

Output: VectorsLP0P|P |−1
andRP0P|P |−1

stored in mem-
ory of Pi

Method:

function Reductionoperator⊕DFA((Li,Ri),(Lj,Rj))
{

for x← 0 . . . |Q| − 1 do
LPiPj

← LPj
[LPi

[x]]
RPiPj

← RPi
[x] +RPj

[LPi
[x]]

endfor
return (LPiPj

,RPiPj
)

}

Algorithm 3.6 (Parallel binary reduction for Algo-
rithm 3.3)
Input: All variables and results of Algorithm 3.3
Output: Reduced results stored in memory ofP0

Method: All processors perform this reduction, commu-
nication si performed in pairs in order to reduce number of
parallel steps. After performing this reduction, complete
result of DFA run is stored inLP0P|P |−1

[q0] and number of
reached final states inRP0P|P |−1

[q0]

for all P0, P1 . . . P|P |−1 do in parallel
MPI Reduce(dataRPPi

,LPPi

usingReductionoperator⊕DFA store results onP0)
endfor

for all P0 do in parallel
return(RP0P|P |−1

[q0],LP0P|P |−1
[q0])

endfor

reduction 3.4 performs the run of DFA in parallel.

Proof
Let M = (Q, Σ, δ, q0, F ) be a DFA,T = t0t1 . . . tn be
an input text andP = P0, P1, . . . , P|P |−1 be a set of pro-
cessors running this DFA run. At the beginning of the al-
gorithm, the input text is divided among processors such
as if all parts of it will be concatenated in order of increas-
ing processor numbers, the original input text will be recon-
structed.

Let processorPi has its part of input textTi =
t⌊i n

|P |
⌋t⌊i n

|P |
⌋+1 . . . t⌊(i+1) n

|P |
⌋−1. In the sequential run the

configuration of automatonM after reading the previous
symbolt⌊i n

|P |
⌋−1 will be (qj , t⌊i n

|P |
⌋t⌊i n

|P |
⌋+1 . . . tn), where

qj is some state of setQ. Since processorPi runs the DFA
starting in all possible statesqj ∈ Q and computes config-

urations according to these states, no configuration can be
missed.

At the end of the run the reduction of results is made in a
way that the correct initial state is chosen and the result cor-
responding to this initial state is sent to the next processor.
The last processor performing the reduction has the result
of the whole DFA run.

2

Theorem 3.3
The run of general DFA shown in Algorithm 3.3 using Par-
allel trivial reduction shown in Algorithm 3.4 runs in time
O( |Q|n

|P | + log |P |+ |P |), where|Q| is the number of states
of automatonM , n is the length of input text and|P | is
number of processors in cluster of workstations running this
algorithm.

Proof
See the Algorithm 3.3. First, we focus on the first part of
complexity formula —O( |Q|n

|P | ). The input text is divided
among processors using block data decomposition, so each
processor takesn/|P | symbols. These symbols are read us-
ing while cycle, therefor number of iterations of this cycle
is n/|P |. Inside thewhile cycle there is onefor cycle, pro-
viding computing of possible last active states. Number of
iterations of this cycle is|Q|. This gives us first part of com-
plexity formula.

The second part—O(log |P |) is complexity ofBarrier,
which is necessary to make correct reduction.

The third part of formula—O(|P |) is complexity of triv-
ial reduction shown in Algorithm 3.4. Here, each processor
sends partial result to next processor (last processorP|P |−1

sends partial result toP0 in order to finish computation in
memory of the first processor), so|P | send operations must
be performed. 2

Theorem 3.4
The run of general DFA shown in Algorithm 3.3 using Par-
allel binary reduction shown in Algorithm 3.6 runs in time
O( |Q|n

|P | + log |P | + |Q| log |P |), where|Q| is number of
states of automatonM , n is the length of input text and|P |
is number of processors in cluster of workstations running
this algorithm.

Proof
First two parts of complexity formula are same as in proof
of Theorem 3.3.

The third part of formula—O(|Q| log |P |) is the com-
plexity of Parallel binary reduction 3.6 using Binary reduc-
tion operator 3.5. This reduction consists ofO(log |P |)
calls of reduction operator. This operator has onefor cycle
having|Q| iterations, hence complete complexity of binary
reduction isO(|Q| log |P |). 2



Example 3.5
Let M be a DFA for exact string matching for patternS =
banana,
T = abananabananabaabananabananaababanan be an
input text and|P | = 4 is number of processors. Automaton
M is shown in Figure 1.

0 1 2 3 4 5 6
b a n a n a

b b

b ∩ a

b ∩ n

b ∩ n
b ∩ a

b ∩ a

b

b
b

b
b

b

Figure 1. DFA for exact string matching for
pattern S = banana

δM a b n
0 0 1 0
1 2 1 0
2 0 1 3
3 4 1 0
4 0 1 5
5 6 1 0
6 0 1 0

The input text has length 36 symbols, so it can be di-
vided into 4 blocks having 9 symbols each. The following
table shows the first phase of Algorithm 3.3 before reduc-
tion. Each processor computes possible last active state sup-
posing all states one by one as initial and counts number of
visited final states. After computing this table the results
are reduced as is shown on Figure 2. The initial state of au-
tomatonM is q0, which has index0 in the table, so result
of the DFA run is:

• last active stateLAS = 5

• number of reached final states is4

We can see that results of parallel DFA run are same as
results of the sequential DFA run.

P0

- a b a n a n a b a # of reached final states
0 0 1 2 3 4 5 6 1 2 1
1 2 1 2 3 4 5 6 1 2 1
2 0 1 2 3 4 5 6 1 2 1
3 4 1 2 3 4 5 6 1 2 1
4 0 1 2 3 4 5 6 1 2 1
5 6 1 2 3 4 5 6 1 2 2
6 0 1 2 3 4 5 6 1 2 1

P1

- n a n a b a a b a # of reached final states
0 0 0 0 0 1 2 0 1 1 0
1 0 0 0 0 1 2 0 1 2 0
2 3 4 5 6 1 2 0 1 2 1
3 0 0 0 0 1 2 0 1 2 0
4 4 5 0 0 1 2 0 1 2 1
5 0 0 0 0 1 2 0 1 2 0
6 0 0 0 0 1 2 0 1 2 0

P2

- n a n a b a b a b # of reached final states
0 0 0 0 0 1 2 3 4 5 0
1 0 0 0 0 1 2 3 4 5 0
2 3 4 5 6 1 2 3 4 5 1
3 0 0 0 0 1 2 3 4 5 0
4 5 6 0 0 1 2 3 4 5 1
5 0 0 0 0 1 2 3 4 5 0
6 0 0 0 0 1 2 3 4 5 0

P3

- a a b a b a n a n # of reached final states
0 0 0 1 2 1 2 3 4 5 0
1 2 0 1 2 1 2 3 4 5 0
2 0 0 1 2 1 2 3 4 5 0
3 4 0 1 2 1 2 3 4 5 0
4 0 0 1 2 1 2 3 4 5 0
5 6 0 1 2 1 2 3 4 5 1
6 0 0 1 2 1 2 3 4 5 0

init. state LAS # fin. st.

0 2 1

1 2 1

2 2 1

3 2 1

4 2 1

5 2 2

6 2 1

init. state LAS # fin. st.

0 5 0

1 5 0

2 5 0

3 5 0

4 5 0

5 5 1

6 5 0

init. state LAS # fin. st.

0 1 0

1 2 0

2 2 1

3 2 0

4 2 1

5 2 0

6 2 0

init. state LAS # fin. st.

0 5 0

1 5 0

2 5 1

3 5 0

4 5 1

5 5 0

6 5 0

P0 P1 P2 P3

init. state LAS # fin. st.

0 2 2

1 2 2

2 2 2

3 2 2

4 2 2

5 2 3

6 2 2

init. state LAS # fin. st.

0 5 1

1 5 1

2 5 2

3 5 1

4 5 2

5 5 1

6 5 1

init. state LAS # fin. st.

0 5 4

1 5 4

2 5 4

3 5 4

4 5 4

5 5 5

6 5 4

Figure 2. Binary reduction of partial results
for Example 3.5

3.2.3 Analysis of DFA run method

Sequential method of run of general DFA has time com-
plexity SU(n) = O(n), so it depends only on length of
input text. We can see in Theorems 3.3 and 3.4 that paral-
lel DFA run method depends in addition on the number of
processors|P | and on the number of states of automatonM
being run.

If we suppose that the length of the input text is far
greater than the number of processors (n≪ |P |), we can ig-



nore the barrier partO(log |P |) in the complexity formula.
This overhead is common in parallel algorithms and barrier
is made only once per run of the algorithm. Contrary to the
sequential run of DFA, the parallel run depends also on the
number of states|Q|. This dependency is present because
of precomputing possible terminal states (there is a lot of
subresults computed by each processor, but only on of them
is used).

If we use the trivial reduction shown in Algorithm 3.3,
we need timeT(n, |P |) = O( |Q|n

|P | + log |P | + |P |) to run
it. If we suppose that number of processors|P | is much
smaller than the length of the input textn and the number
of states|Q|, we can omit the barrier and reduction parts
of complexity formula, so we get complexityT(n, |P |) =

O( |Q|n
|P | ). Speedup is then

S(n, |P |) = O





n
|Q|n
|P |



 = O

(

|P |

|Q|

)

(7)

We can see that parallel speedup depends on the num-
ber of processors|P | and the number of states|Q|. If we
increase|P |, we speed up the run of the algorithm. It is ob-
vious that if we run a DFA with more states than the number
of processors we can use, we do not reach the optimum time
of computation. On the other hand the run of DFAs with less
states is faster than the sequential algorithm.

If we use the parallel binary reduction shown in Al-
gorithm 3.4, we run DFA in timeO( |Q|n

|P | + log |P | +

|Q| log |P |). At this formula, we can not simply omit the re-
duction part of formulaO(|Q| log |P |) because it depends
not only on the number of processors|P |, but also on the
number of states|Q|. As mentioned above, this method
of DFA run is not suitable DFAs with more states than
the number of processors, so if we accept this, we can get
rough approximation of speedup which is the same as in
Formula 7.

3.2.4 Method improvements

If we look at method of subresult reduction, we see that
the first processorP0 never uses items of vectorsR andL
not corresponding toinitial state q0. It means that when
this processor knows its initial state (and it is always), it
does not need to compute all of the possible values. This
improvement can be easily implemented by modifyingfor
cycle, which is nested in input text readingwhile cycle3.

As described above, this DFA run negatively depends on
the number of states of automaton being run. This is the
reason why the automaton should be minimized before the
run.

3This can be done easily by breaking the loop after state forq0 is com-
puted, or by modifying of iteration condition.

3.2.5 Load balancing

Load balancing of this method can be achieved by nonuni-
form size of blocks of block data decompostion. We al-
most assume computation power of individual processors
as equal, but it is not always truth and even if it is, we can
find out that during computation some processors can be
slower. It can happen e.g. because we do not often have
parallel computer running only our application and sched-
uler of operating system does not give all of the computation
resources to our application.

We can run some heuristics on each processor, supposed
to be used for running our algorithm, and figure out approx-
imate computation power. This power can be used to find
out, how large block of input data can be given to each pro-
cessor. This method is easy and working but, as mentioned
above, the computation power given to our algorithm can
change during the run of the algorithm. We can then face
to a situation when our heuristic tells us to give very large
block of input data to some processor, which will get over-
loaded by some other application somewhere between do-
ing our heuristic and running our algorithm, so we will have
to wait until this slowly working processor processes large
block of data meanwhile other processors have nothing to
work on.

Using an improvement, where we do not precompute
vectorsR andL on first processorP0, we can use saved
computation power by giving larger block of data to this
processor. Size of this block should be calculated with re-
spect to saved iterations offor cycle, time needed to access
next symbol of input data and time needed to compute tran-
sition.

3.2.6 Summary of DFA run method on COW

We have introduced the method of run of general DFA on
the Cluster of workstations with two possible methods of
reduction of partial results. We have designed algorithm,
which does not need any communication operation during
reading of input text, but the penalty for this is necessity
to precompute possible initial states, which has increased
complexity|Q| times.

This method is not suitable for run of DFAs with large
number of states, but may fit for parallel run of small DFAs
with a large input text.

3.3 Run of DFA on a SMP

In this section we describe a method of parallel run
of DFA on a Symmetric shared-memory multiprocessors.
Contrary to processors ofCOW, SMP processors have
shared address space, so that each processor can access
memory of another one.
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Figure 3. Example of block data decomposi-
tion using second method, where 15 data el-
ements is divided among 6 processors

3.3.1 Basic DFA run

The idea of a basic DFA run is the same as in DFA run
on a COW4—we divide the input text among processors,
run the automaton on each of them, supposing each state
of automaton as initial state, and join partial results intothe
result of the run. Since we have a share memory at disposal,
we do not need to send messages in order to join subresults.
At the beginning of the DFA run we can allocate shared
memory for all processors, let each processor to work on its
part of memory and compute final result of DFA run using
this memory at the end of the DFA run.

Remark 3.6
Here, we suppose usage ofOpenMPlibrary, its pragmas and
functions, so all variables, memory allocations, and mem-
ory writes in the algorithm, executed before entering a par-
allel section (we use pseudoalgorithm notation, but in the
source code pragma#pragma omp parallel is used) are
made over the shared memory. It means that in the paral-
lel section these values can be accessed by processors and
even if they are at the beginning of parallel section marked
asprivate, they will contain original values.

Let M = (Q, Σ, δ, q0, F ) be a DFA. Algorithm 3.7
shows us a way, how to run DFA on a SMP using basic
DFA run. We suppose, that:

• each processor has built the transition tableδ,

• each processor has the set of final statesF ,

• processors are ranked bycontinuous linear sequence
of IDs starting with zeroand each of them knows its
own as a value of variablePi,

• processorP0 knows which state is the initial state (q0),

4Described in Section 3.2.

• each processor has access to its part of the input text
(see below),

• the number|P | of processors executing the algorithm
does not change during algorithm execution and all
processors know the value.

As in DFA run on aCOW, we need to implement vec-
torsL andR. These vectors have similar purpose. Since
in SMPthe memory is shared, vectorsL andR for all pro-
cessors compose matrices (vectors of vectors). Vectors in
the matrices are indexed by the processor number. Vector
F and matrixT are the same (See Formulae 2 and 4 re-
spectively). Since they are shared, they are set up only at
beginning of run of algorithm and then the are used by all
processors only for reading.

Mapping ofpossible initial statesto possible last active
statesis implemented as matrixL (of size|Q| × |P |):

L[p] =











l0
l1
...

l|Q|−1











, (8)

wherep ∈ P is a number of processorlj , 0 ≤ j < |Q|, is
the last active state assuming that processorp starts in statej
and processes partTp of the input text (i.e.,̂δ(qj , Tp) = lj).

MatrixR in which we store count of reached final states5

is implemented as below. The matrix has size|Q| × |P |
and each processorPi hasR[Pi] part of it. Each itemri of
this vector contains number of reached final states assuming
initial stateqi:

R[p] =











r0

r1

...
r|Q|−1











(9)

The reduction of partial results is made either sequen-
tially (see Algorithm 3.8) by one processor, which accesses
shared memory and computes the final result, or by all pro-
cessors using binary reduction (see Algorithm 3.9), where
more processors access different memory cells and join
them into the final result.

Theorem 3.7
The run of general DFA shown in Algorithm 3.7 using the
sequential reduction shown in Algorithm 3.8 runs in time
O( |Q|n

|P | + log |P |+ |P |), where|Q| is the number of states
of automatonM , n is the length of the input text and|P | is
number of processors running this algorithm.

5As we have mentioned in Section 3.2, we can store more complex
informations than is the count of reached final states.



Algorithm 3.7 (Basic run of DFA on a SMP)
Input: A transition tableT , set of final statesF , mapping
from possible initial state to possible last visited stateL
and a setR of possibly reached final states of DFA, input
textT = t1t2 . . . tn and initial stateq0

Output: Output of run of DFA
Method: SetS of active states is used, each processor has
its unique numberPi, number of processors is|P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← ⌊Pi

n
|P |⌋

end position← ⌊(Pi + 1) n
|P |⌋ − 1

for k ← 0 . . . |Q| − 1 do
L[Pi][k]← k /∗ intitialize vectorL ∗/
R[Pi][k]← 0 /∗ intitialize vectorR ∗/

endfor

while j ≤ end position do
for k← 0 . . . |Q| − 1 do
L[Pi][k]← T [L[Pi][k], tj ] /∗ evaluate transition∗/
if L[Pi][k] ∈ F then
R[Pi][k]←R[Pi][k] + 1

endif
endfor
j ← j + 1

endwhile
endfor

#pragma omp barrier /∗ wait for the slowest processor∗/

result← perform parallel reduction()
/∗ see Binary 3.9 or Trivial 3.8 reductions∗/

Proof
See the Algorithm 3.7. All|P | processors in parallel read
n/|P | input symbols (this is achieved bywhile loop). After
reading each of this symbol, onefor cycle with |Q| itera-
tions is performed, so complexity of computation of partial
results isO( |Q|n

|P | ).
When we have computed partial results, we need to per-

form the barrier synchronization in order to wait for the
slowest cpu. The barrier has complexityO(log |P |).

The reduction of results using sequential reduction
shown in Algorithm 3.8 takes|P | steps, because it consists
of onefor cycle with |P | iterations. 2

Theorem 3.8
The run of general DFA shown in Algorithm 3.7 using the
parallel binary reduction shown in Algorithm 3.9 runs in
timeO( |Q|n

|P | +log |P |+|Q|⌈log |P |⌉), where|Q| is number

Algorithm 3.8 (Sequential reduction for Algorithm 3.7)
Input: All variables and results of Algorithm 3.7 stored in
shared memory and temporary variablesLtemp,Rtemp

Output: Reduced results stored in shared memory
Method: Only one processor performs this reduction,
reads data from shared memory and stores result in vari-
ablesR[0] andL[0]

Ltemp ← q0

Rtemp ← 0

for k ← 0, 1, . . . , |P | − 1 do
Rtemp ←Rtemp +R[k][Ltemp]
Ltemp ← L[k][Ltemp]

endfor

R[0][q0]←Rtemp

L[0][q0]← Ltemp

Algorithm 3.9 (Binary reduction for Algorithm 3.7)
Input: All variables and results of Algorithm 3.7 stored in
shared memory and temporary variablesLtemp,Rtemp

Output: Reduced results stored in shared memory
Method: All processors perform this reduction, read data
from shared memory, write partial results and store final
result in variablesR[0] andL[0]

for all P0, P1, . . . , P|P |−1 do in parallel
for m← 1, 2, . . . , ⌈log |P |⌉ do

if (Pi mod 2m) = 0 and (Pi + 2m−1) < |P | then
for x← 0 . . . |Q| − 1 do
R[Pi][x]←R[Pi][x] +R[Pi + 2m−1][LPi

[x]]
L[Pi][x]← L[Pi + 2m−1][L[Pi][x]]

endfor
endif

endfor

endfor

of states of automatonM , n is the length of input text and
|P | is number of processors running this algorithm.

Proof
Complexity of computation of partial results is same as in
Theorem 3.7. The complexity of reduction is given by Al-
gorithm 3.9. Here, we need⌈log |P |⌉ parallel steps to be
performed. In each of this step, more processors in parallel



join vectorsR andL. This join is executed inside afor cy-
cle, which has|Q| iterations. Complexity of the reduction
is then|Q|⌈log |P |⌉.

3.3.2 Analysis of DFA run method

We can see, that we get the same complexity as in the run of
DFA on aCOW. In comparsion withCOW-based algorithm,
we do not need to explicitly send messages, but we benefit
from the shared memory.

We can also speed up run of the algorithm by computing
of transition table in parallel and access it in shared memory.
Against this can be fact that some computers have the access
to shared memory as an expensive operation (e.g. due to
cache coherency overhead, limitations of bus and so on. . . ).

4 Experiments

Algorithms for the parallel run of DFAs and DFAs were
implemented inC programming language usingMPI envi-
ronment andOpenMPenvironment. We measured time of
execution onSMPcomputer andCOWcomputer.

4.1 Used parallel computers

Star Star is a cluster of workstations with 16 nodes (IN-
TEL Pentium III 733 MHz, 256 MB RAM, HD 30 GB)
interconnected by Myrinet and Ethernet network. Appli-
cation for this cluster was written usingMPI. Because of
problems with using standardMPI functions handling read-
ing of file, we had to used standardC functionsfopen, fread,
. . . etc. A problem we faced to was that we could not up-
load files with experimental input data to individual nodes,
which lead to the fact that all read input data was shared by
one node. This disadvantage decreased performance, be-
cause we were limited by bandwith and latency of network
and futhermore loss of performance was caused by over-
loading of node having input data and its harddrive, which
could not read data effectively sequentially, but had to jump
in a file as was arriving request from individual nodes.

Altix Altix is a symmetric shared-memory multiproces-
sor with 32 processors (16x 1,3 GHz 3MB L3 cache, 16x
1,5 GHz 6MB L3 cache) interconnected byNUMAlink net-
work. Each processor has its own local memory, which
is fast and can access to shared memory (but accessing of
shared memory is much slower). As in Star, we can reach
to a performance bottleneck while accesing one data file by
multiple processors. Also e.g. having of transition table in
shared memory lead to higher execution time. The measur-
ing applications were written in C using OpenMP.

Figure 4 shows a comparison of execution time of gen-
eral DFA of sequential and parallel run on Altix, number of

 0

 5

 10

 15

 20

 25

 30

 0  1e+08  2e+08  3e+08  4e+08  5e+08  6e+08  7e+08  8e+08  9e+08  1e+09

tim
e 

of
 e

xe
cu

tio
n

[s
]

length of the input text 
 [symbols]

sequential
parallel |P|=31

Figure 4. Execution times of general DFA in
sequential and parallel run on Altix (|Q| = 7)
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Figure 5. Dependency of execution time of
parallel run of DFA on |P |/|Q| (Altix, |P | = 31,
n = 108)

states|Q| = 7. We can see, that time of parallel algorithm is
worse than for sequential. This is caused by collisions on a
bus, overloading the harddrive by multiple file accesses and
higher time complexity of parallel algorithm (precomputing
of possible initial states).

Figure 5 shows a dependency of execution time of par-
allel run of DFA on|P |/|Q| (Altix, |P | = 31, n = 108).
This graph shows performance of execution time of parallel
run related to number of processors to one state of automa-
ton. We can see, that for|P |/|Q| < 1 is performance low,
but if we increase the number of processors, we speedup the
computation. For|P |/|Q| > 10 performance descends due
to collisions on bus and higher time needed for reduction of
results.

5 Parallel run of pattern searching DFAs

In this section, we show parallel runs of pattern match-
ing finite automata. These non-general automata can be run



in parallel without neccesity to precompute possible initial
states, so the complexity of the run does not depend on the
number of states of automaton being run. All these runs are
based on synchronization of automaton.. We suppose run-
ning this run on aCOW, because it can be simply executed
also onSMPwith only few modifications.

5.1 Synchronization of Finite automata

In the run of general DFA, we had to use precomputing
of possible initial states, because we do not have any infor-
mation about the last active state of automaton which read
previous block of input text. We did not know in which state
to start the DFA run6. If we restrict the DFA run to subset
of k-local automata, we do not have to precompute possi-
ble initial states, because we can synchronize automatons
in each processor and start DFA run from a correct state.

Definition 5.1 (Synchronizing word)
Let us have a DFAM = (Q, Σ, δ, q0, F ). We say that a
wordw = a0a1 . . . ak−1 is synchronizing forM if ∀p, q ∈
Q, δ̂(p, w) = δ̂(q, w).

Definition 5.2 (k-local automaton, synchronizing au-
tomaton)
Let us have a DFAM = (Q, Σ, δ, q0, F ). We say that au-
tomatonM is k-local if there exists an integerk such that
any word of lengthk is synchronizing. We say, that au-
tomaton is synchronizing, if there exists a wordw = Σ∗ of
length at leastk, which is synchronizing. The numberk can
be called the synchronization delay of automatonM .

5.2 Parallel run of k-local DFA

5.2.1 Method of the parallel run ofk-local DFA

Let M = (Q, Σ, δ, q0, F ) be ak-local DFA,T = t1t2 . . . tn
be an input text and|P | be the number of processors run-
ning this DFA. As in methods of run of general DFA, we
need to divide the input text among processors using block
data decomposition, but in this DFA run method, we need
to give to each processor in addition lastk symbols of pre-
ceding block of input text, so that blocks overlaps ink sym-
bols. This overlapping synchronizes automaton into correct
initial state before it reads its part of the input text.

We show this method in Algorithm 5.1. We can see, that
at the beginning of the algorithm the boundaries of the input
text are set using the block data decomposition, then for all
processors (exceptP0) the left boundary is extended byk
symbols to the left. Of course we should not count reached
final states during synchronizing the automaton. Therefore
we add conditionj ≥ ⌊Pi

n
|P |⌋ to the lastif statement.

6Except of the first processor, which has this information—the initial
stateq0 of the automatonM = (Q, Σ, δ, q0, F )

Algorithm 5.1 (Basic run of k-local DFA)
Input: A transition tableT , set of final statesF , input
text T = t1t2 . . . tn, initial stateq0 and the length of the
synchronizing word in variablek
Output: Number of reached final states
Method: SetS of active states is used, each processor has
its unique numberPi, number of processors is|P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← ⌊Pi

n
|P |⌋

found ← 0 /∗ number of reached final states∗/
if Pi > 0 then

/∗ The first proc. does not need to synchronize∗/
j ← j − k
/∗ Shift the left boundary.∗/

endif
end position← ⌊(Pi + 1) n

|P |⌋ − 1

q ← q0

while j ≤ end position do
q ← T [q, tj ] /∗ evaluate transition∗/
if L[i] ∈ F and j ≥ ⌊Pi

n
|P |⌋ then

found ← found +1
endif j ← j + 1

endwhile
MPI Reduce(data found using operator+
store results onP0)

endfor

for all P0 do in parallel
return( found)

endfor

Theorem 5.3 (̌Cerný’s conjecture)
If an n-state automaton is synchronizing, there exists a syn-
chronizing wordw of length|w| ≤ (n− 1)2.

Theorem 5.4
The run ofk-local DFA shown in Algorithm 5.1 runs in time
O(k + n

|P | + log |P |), where|Q| is the number of states of
automatonM , n is the length of the input text and|P | is the
number of processors running this algorithm.

Proof
See the Algorithm 5.1. All processors execute this algo-
rithm in parallel. It contains onefor cycle, which has in
worst casek + n

|P | iterations. k is the number of steps
needed to synchronize automaton (i.e. it is the maximal
length of the synchronizing word). At the end of the al-
gorithm, there is one binary reduction, whichlog |P | times



uses binary operator+. Complexity is thenO(k + n
|P | +

log |P |).
2

Analysis of DFA run method We can see in Theo-
rem 5.4, that complexity of run ofk-local DFA depends on
the length of synchronizing wordk. Contrary to the run of
general DFA, here is not complexity multiplied by|Q|. It
means, that if we omit the time needed to reduce results and
expect thek much smaller than the length of the input text
(which is usual assumption in pattern matching automata),
we get the speedup:

S(n, |P |) = O

(

n

k + n
|P | + log |P |

)

.
= O

(

n
n
|P |

)

= O(|P |) (10)

We can see, that we get the linear speedup for DFAs with
n ≫ |Q|, which is the upper bound of speedup achiveable
by parallelization of sequential algorithm.

Algorithm 5.2 (Construction of DFA for the exact string
matching)
Input: PatternP = p1p2 . . . pm.
Output: DFA M accepting languageL(M) = {wP | w ∈
Σ∗}.
Method: DFA M = ({q0, q1, . . . , qm}, Σ, δ, q0, {qm}),
where the mappingδ is constructed in the following way:

for eacha ∈ Σ do
δ(q0, a)← {q0} /∗ self-loop of the initial state∗/

endfor
for i← 1, 2, . . . , m do

r← δ(qi−1, pi)
δ(qi−1, pi)← qi/∗ forward transition∗/
for eacha ∈ Σ do

δ(qi, a)← δ(r, a)
endfor

endfor

6 Conclusion and future work

We have presented implementations of DFA run on two
different parallel computer architectures. We first imple-
ment parallel run of general DFA. We did some experiments
that show it is not so efficient in practice due to bus colli-
sions. Then we select a class of DFA called synchronizing
automata. For this class of DFA we design algorithm for
parallel run that is simpler and it is expected to be prac-
tically efficient. Our next research will focus on parallel
simulation of nondeterministic finite automata.
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and M. Šimánek, editors,Proceedings of the
Prague Stringology Conference ’05, pages 69–
80, Czech Technical University in Prague,
Czech Republic, 2005.

[NKW06] E. K. Ngassam, D. G. Kourie, and B. W.
Watson. On implementation and performance
of table-driven DFA-based string processors.
In J. Holub and J.̌Zďárek, editors,Proceed-
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