Implementation of Deterministic Finite Automata on Parallel Computers’

Jan Holub Stanisla8tekr
Department of Computer Science and Engineering,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
Karlovo namesti 13, 121 35, Prague 2, Czech Republic,
e-mail: holub@fel.cvut.cz

Abstract gies. A recent paper [Hol08] provides a survey of vari-
ous finite automata implementations considering CPU (like
We present implementations of parallel DFA run meth- [NKWO05, NKWO06]). One of the latest technologies used is
ods. We compare the parallel methods with well known se-a usage of multiple CPU core. The speed of sequential run
quential versions of these methods and find whether and un-of the finite automata cannot follow the increase of compu-
der what conditions is worthy to use the parallel methods of tation power of computers that is mostly based on dual-core
simulation of run of finite automata. and quad-core processors. Therefore a demand on parallel
We introduce the paralell DFA run methods for general run of the finite automata strenghtens.
DFA, which are universal, but due to the dependency of sim- The parallel run of deterministic finite transducer was
ulation time on the number of stat&3| of automaton be- first described in [LF80]. We implement deterministic finite
ing run, they are suitable only for run of automata with the automata run on two parallel computer architectures. Since
smaller number of states. finite automata are very often used in the approximate and
On the other hand, if we apply some restrictions to exact pattern matching, we also describe methods of par-
properties of automata being run, we can reach the lin- allel simulation on these automata exploiting their specia
ear speedup compared to the sequential simulation methodproperties—they are synchronizing automata.
First, we show methods benefiting frdmocality that al-
lows optlmum parallel run of exact and approximate pattern 2 Finite Automata
matching automata.
Finally, we show the results of experiments conducted
on two types of parallel computers (Cluster of workstations ~ Nondeterministic finite automatdilFA) is a quintuple
and Symmetric shared-memory multiprocessors). (Q,%,6,q0, F), whereQ is a finite set of states; is a set
of input symbolsg is a mapping? x (X U {e}) — P(Q),
go € @ is an initial state, and’ C @ is a set of final states.
Deterministic finite automato(DFA) is a special case of
NFA, whered is a mapping? x & — Q. We define) as
an extended transition functiorﬁ:(q,a) = q, S(q,ua) =
Finite automata (also known dmite state machings p — S(Q,u) =q¢,0(¢,a) =p,a€,ucy.
are the formal system for solving many tasks in Computer A configuration of DFAs a pair(¢, w) € Q x %*. The
Science. The finite automata run very fast and there ex-jnjtial configuration of DFAis a pair (¢, w) and afinal
ists many efficientimplementations (e.g., [Tho68, NKWO5, (accepting) configuration of DFAs a pair (¢s,), where
NKWOg]). q; € F. A move of DFAM = (Q,%,4,qo, F) is a re-
The increase of computation power of available comput- |ation ,,C (Q x (Z*\ {e})) x (Q x ©*) defined as
ers is based not only on the increase of CPU frequency(q,, aw) s (g2, w), whered(q,a) = o, a € X, w € B*,

but also on other modern technologies. The finite au- ¢, ¢, € Q. The symbol-%, denotes a transitive and reflex-
tomata implementations have to consider these technolo4ye closure of relatiof ;.

*This research has been partially supported by the Minidtfyduica- . In the previous deflnl'.uon we talk aboubmpletely de-
tion, Youth and Sports under research program MSM 684077@ad the fined DFA where there is for each source state and each

Czech Science Foundation as project No. 201/06/1039. input symbolexactly onedestination state defined. How-

1 Introduction

ever, there is alspartially defined DFAwhere there is for Algorithm 3.2 (Basic sequential run of DFA—pattern

each source state and each input synaiahost onales- matching version)

tination state defined. The partially defined DFA can be Input: A transition tabled and a setF’ of final states of
transformed to completely defined DFA introducing a new DFA, input textT = tit»...t,, ¢ iS active stateqq is

state (so called sink state) which has a self loop for each initial state

symbol of ¥ and into which all non-defined transitions of ~Output: Information about all reached final states

all states lead. Method:
J=0
3 DFArun 7 —
while j <n do
3.1 Sequential DFA run q — 8]q,t;]
je—Jj+1
The sequential run of DFA uses tha fact that there is al- if ¢ € F then
ways just one stateactive during the computation. write (‘Final stateq reached at positiof.")
endif
Algorithm 3.1 (Basic sequential run of DFA) endwhile
Input: A transition tablej and a sett” of final states of
DFA, input textT = tyts...t,, ¢ iS active stategq is endif
initial state
Output: Information whether DFA accepts whole input
ﬁﬁﬁ;;m 3.2. Thenitrunsin tim&(n), wheren is the length of the
input text. Space complexity ©(|Q||X|).
f] j: 20 Proof_ _ _
while j < n do Algorlthm 3..1 or 3.2 has onwhile cycle haymg the num-
g — 5@ L] bgr of iterations _equal to thg Ie_ngth of the input tgxt. IBS|d_
je +’ 17 t_h|s Ioc_)p, there is _o_nly retrieving of correspond_lr}g transi
endwhile tion § in the transition table. We expect transition table
implemented as aompletely defined transition tab{éor
if ¢ F then completgly deﬁned DFA), _Which means it is implem_ent_ed
write (‘The automaton accepts the text.) as two—fj|menS|onaI array mdexgd by states of_ DFA in first
else dlmenslor] and by characters_ of input e}lphgbet in t_hg second
write (‘The automaton does not accept the text.) one. Flndlng_the corresponding state in t_h|s transnptetab
endif has complexityO(1), so the total complexity of algorithms

defined above i€ (n).

Space complexity is given by size of transition table which
Note that the Algorithm 3.1 (run of accepting automa- containg@| x || values, wher¢X’| is the size of the input

ton) can be used only for purposes where we need to know ifalphabet. O

whole input text is accepted by automathor not. Some-

times an information about all reached final states is nec-

essary, so Algorithm 3.2 (run of pattern matching automa- 3 2 DFA run on a COW

ton) is a modification solving this situation. This algonth

differs in position ofif statement, so everytime the automa-

ton reaches a final state, an information about this state anqj

the position of the last read symbol is written out. This

kind of finite automaton is widely used in pattern matching

[Mel95, Mel96, Hol96, HIMMO1].

Theorem 3.1
Let DFA M = (Q, X, 9, qo, F') is run by Algorithm 3.1 or

In this section we describe a method of parallel run of
FA on a cluster of workstations (COW). Let us remind
that on COW-based parallel computengssage passirig
used for exchanging data among processors.

3.2.1 DFA run method

P , When running DFA sequentially on input tektof sizen,
In this text, we suppose run of completely defined automatmy . S
partially defined automaton can be converted to the equivalemplete we startin one initial state and aftersteps we reach a state
one as mentioned in Section 2. from setQ.

The basic idea of run of DFA on a COW is to divide the wherel;, 0 < j < |Q)|, is the last active state assuming that
input text among all processors, run the automaton on eacthprocessorP; starts in statgl and processes paft of the

of them, and then join all subresults. input text (i.e.,S(qj, T;) = 1;).
Let us have an DFA = (Q, X%, 6, qo, F) and cluster of The setF’ of final states is implemented as bit vec#r
workstations with| P| processors. The input text is sliced
into | P| partsTy, T, ... T|p| using block data decomposi- fo
tion. On every parfl; of input text, DFA is run and after fi
reading all symbols some state is reached. F= : ’ (2)

A problem comes with joining of subresults. We always
need to connect the last active state of proce#sdo the
first active state of processé¥; (so that the initial state of \yhere bit f;=1,if ¢; € F, or f; = 0, otherwise.

processorP; 1 is the last active state df;). The problem We also need to implement a vect® in which we

is that the last active state of procesgoris known after giqre information about the automaton run. It depends
reading whole parfl; of input text. If eachP;., would o oyr requirements what kind of information we want to
need to wait for the last active stateand then process part — giore We can store a complete sequence of configurations
T;+1, we reach sequential complexity (or even worse be- (g0, w) %, (q,), but for our purposes (without loss of
cause sending results between processors is very eXpe”SiV&enerality) we store only a count of final states reached.

operation). _ _ _ Each element; of this vector contains a number of reached
The way, how to solve this problem, is to consider all 5] states assuming initial stajg

states (one after other) as initial states and for each af the

fio1-1

to find corresponding last active state. After doing this, o
we have got mappings of orieitial state to onelast ac- -
tive state. This mapping can be simply reduced by parallel R =) 3)
binary reduction [LF80]. :
Algorithm 3.3 shows us a way, how to run DFA on a TQI-1

COW using basic DFA run. We suppose, that: , . o)
Finally, transition functiord is implemented as a transi-

e each processor has built the transition tahle tion table7 of size (Q| x |X|), wherea € ¥ andg; € Q
such thay; = 6(g¢;, a):
e each processor has the set of final stdtes

e processors are ranked lepntinuous linear sequence

. . , Tli,al = q;,q; € 4
of IDs starting with zeraand each of them knows its lival = 45,05 € @ “)
own as a value of variableP;,
e processor; knows which state is the initial state, 3.2.2 Distributing and finishing partial results
e each processor has access to its part of the input textAfter running DFA in parallel, each processBr has built
(see below), mappingLp, (possible initial stateo possible last active
_ . statg in local memory. In order to finish parallel DFA run,
e atleast two processors execute this algorithm, we need to join these mappings (reduce results from proces-
sors).

e the numbel P| of processors executing the algorithm
does not change during algorithm execution and all
processors know the value.

There are two possible methods, how to reduce data from
processors. The first method is based on trivial reduction.

This reduction is based on fact, that only the processor
We implement a mapping giossible initial statego Py knows the initial state of automatai. Hence, only

possible last active states vector (of size|Q)): the processoP, can send the last active stdteand the
number of reached final stategto the next processar;.

This processor uses incoming vallgeto determine which

lo of possible last active states is correct and sends it to the
L next processor as an active start state. Incoming vajue
Lp = : ’ (1) is added to a corresponding value and also sent to the next
I processor.
Q-1

If we want to use the binary reduction, we do not start
2This variable is often named ‘rasank’ in MPI programs. from the first processor, because more reductions are made

Algorithm 3.3 (Basic run of DFA on a COW) Algorithm 3.4 (Parallel trivial reduction for Algo-
Input: A transition table7, set of final stateg”, mapping rithm 3.3)

from possible initial state to possible last visited stéte Input: All variables and results of Algorithm 3.3 and tem-
and a sefR of possibly reached final states of DFA, input porary variable<,c,np, Riemp

textT = tyts .. .t, and initial statey Output: Reduced results stored in memoryief

Output: Output of run of DFA Method: All processors perform this reduction, communi-
Method: SetS of active states is used, each processor has cation is performed sequentially in order to reduce the size
its unigue numbeP;, number of processors j®|. of messages being sent.

forall Fy, P ... Ppj—; doin parallel
j— Pt

end_position «— |(P; + 1)%] -1

for all Py doin parallel
MPI _Sendto P; dataR[qo])
MPI _Sendto P; dataL[qo])
endfor

for k—0,1...|Q]—1 do

L[k] < k I« intitialize vectorL «/
R[k] « 0/ intitialize vectorR =/
endfor

while j < end_position do
for i—0...|Q|—1 do

forall P, P, ... Pp|_, doin parallel
Riemp < MPI_Recfrom Pp, _1)
Liemp <— MPI_RecUfrom Pp,_1)
R[Liemp] — R[Ltemp] + Riemp
MPI _Sendto Pp,+1 dataR[Liemp))
MPI _Sendto Pp, 1 dataLl[Liemp))

L[i] < T[L[i],t;] Ix evaluate transition/ endfor
if L[i] € F then .
R[i] — R[i] +1 forall Pjpj_; doin parallel
endif Rtemp « MPI_Recufrom P p|_5)
endfor Liemp < MPI_Recfrom Pp|_;)
je—j+1 MPI _Sendto Pp, dataR[Liemyp])
MPI _Sendto Pp, dataL{Licmp)|)
endwhile endfor
endfor for all P, doin parallel

Riemp < MPI_Recufrom Pp|_;)
Liemp < MPI_Rec\(from Pp|_)
return(Riemp, Liemp)

result — perform _parallel _reduction() endfor

/x see Binary 3.6 or Trivial 3.4 reductions

MPI _Barrier () /x wait for the slowest processef

end of the binary reduction we have got mappibg p, ,
wherei = 0 andj = |P| — 1, hence value oL p, p, [qo] is
in one parallel step. This makes reduction more compli- the last active state of run of automatbh
cated, because not only one value needs to be sent between VectorR is reduced similarly:
processors, but complete vectd@reind’R must be reduced.
We define binary operat@¥pga, which makes one mapping
Lp,p, from mappingsCp, andLp,, where P; and P; are
processors performing actual step of binary reductions Thi
newly created mappingp, p; is built this way:

RP'L [O] + RPj [£P’L [0]]

RPi [1] + RPj [‘CR [1]]
P P; = : (6)
Rp,(1Q = 1]+ Rp, [Lr[IQ — 1]

We can see, that we need to have also vefttr reduce

2? Ei E)H vectorR. This is the reason why it is necessary to reduce
Lp,p, = o . (5) both vectors within one reduction operation.
: Algorithm 3.5 shows possible implementation of this op-
Lp,[Lp[|Qf —1]] erator as a function.

This vectorLp, p, is either complete result of binary re- Theorem 3.2
duction or will be used in next reduction operation. At the The DFA run method shown in Algorithm 3.3 using trivial

Algorithm 3.5 (Binary reduction operator for Algo-
rithm 3.6)

Input: vectorsCp, andR p, from processopP; and vectors
Lp, andR p; from processor;

Output: VectorsLp,p ., _, andRpop‘P‘fl stored in mem-
ory of P;

Method:

function Reductionoperator®pra((£:,R:),(L;,R;))
{
for x —0...]1Q|—1 do
‘CPin — ‘CPj [‘CR [,T]]
RPin —Rp, [‘T] + RPj [‘CR [.I']]
endfor
return (Lp, p; R p, p;)

}

Algorithm 3.6 (Parallel binary reduction for Algo-
rithm 3.3)

Input: All variables and results of Algorithm 3.3

Output: Reduced results stored in memoryref

Method: All processors perform this reduction, commu-
nication si performed in pairs in order to reduce number of
parallel steps. After performing this reduction, complete
result of DFA runiis stored i p, p, ., _, [q0] @and number of
reached final states iR g, p ., _, [q0]

forall Fy, P ... Ppj—; doin parallel
MPI _ReducddataRpPi Lpp,
usingReductionoperator®pea store results o)
endfor

for all Py doin parallel

return(Rp,p . _, [90], Lryp p _, [q0])
endfor

reduction 3.4 performs the run of DFA in parallel.

Proof

Let M = (Q,%,9,q, F) be a DFA,T = toty...1, be
an input text and® = Py, P1,..., Ppj_; be a set of pro-
cessors running this DFA run. At the beginning of the al-

urations according to these states, no configuration can be
missed.

At the end of the run the reduction of results is made in a
way that the correct initial state is chosen and the resut co
responding to this initial state is sent to the next processo
The last processor performing the reduction has the result
of the whole DFA run.

O

Theorem 3.3

The run of general DFA shown in Algorithm 3.3 using Par-
allel trivial reduction shown in Algorithm 3.4 runs in time
(’)(% +log |P| + | P|), where|Q| is the number of states
of automatonM, n is the length of input text an{P| is
number of processors in cluster of workstations running thi

algorithm.

Proof
See the Algorithm 3.3. First, we focus on the first part of
complexity formula —@(%). The input text is divided

among processors using block data decomposition, so each
processor takes/| P| symbols. These symbols are read us-
ing while cycle, therefor number of iterations of this cycle
isn/|P|. Inside thewhile cycle there is onéor cycle, pro-
viding computing of possible last active states. Number of
iterations of this cycle i&Q|. This gives us first part of com-
plexity formula.

The second part-&(log | P|) is complexity ofBarrier,
which is necessary to make correct reduction.

The third part of formula—©(| P|) is complexity of triv-
ial reduction shown in Algorithm 3.4. Here, each processor
sends partial result to next processor (last proceBgor ;
sends partial result t&, in order to finish computation in
memory of the first processor), §B| send operations must
be performed. |

Theorem 3.4

The run of general DFA shown in Algorithm 3.3 using Par-
allel binary reduction shown in Algorithm 3.6 runs in time
(’)(% + log|P| + |Q|log |P]), where|Q| is number of
states of automatol/, n is the length of input text andP|

is number of processors in cluster of workstations running

gorithm, the input text is divided among processors such this algorithm.

as if all parts of it will be concatenated in order of increas-
ing processor numbers, the original input text will be recon
structed.

Let processorP; has its part of input textr;
tu‘_}gdtu‘_;‘]ﬂ . 't_(iﬁ-l)%j—l' In the sequential run the
configuration of automatod/ after reading the previous
symboltuﬁj,l will be (qj,tuﬁjtu‘nﬁﬁl ...tn), where
g, is some state of s€). Since processaP; runs the DFA
starting in all possible stateg €) and computes config-

Proof
First two parts of complexity formula are same as in proof
of Theorem 3.3.

The third part of formula—©(|Q|log|P|) is the com-
plexity of Parallel binary reduction 3.6 using Binary reduc
tion operator 3.5. This reduction consists Gflog |P|)
calls of reduction operator. This operator has forecycle
having|Q)| iterations, hence complete complexity of binary
reduction isO(|Q|log | P|). 0

Example 3.5

Let M be a DFA for exact string matching for patte$h=
banana,

T = abananabananabaabananabananaababanan be an
input text and P| = 4 is number of processors. Automaton
M is shown in Figure 1.

Figure 1. DFA for exact string matching for
pattern S = banana

=2
=
~

ol n|lw/ N Rlo

o|lo| o]~ o|N o
RR R R R PR
o|lo|u|o|w|o|lo|3

The input text has length 36 symbols, so it can be di-
vided into 4 blocks having 9 symbols each. The following
table shows the first phase of Algorithm 3.3 before reduc-
tion. Each processor computes possible last active state su

posing all states one by one as initial and counts number of

visited final states. After computing this table the results

are reduced as is shown on Figure 2. The initial state of au-

tomatonM is qp, which has index in the table, so result
of the DFA run is:

e last active statd AS =5

o number of reached final statestis

We can see that results of parallel DFA run are same as

results of the sequential DFA run.

of reached final stateg
1

oo & w| Nk o
N[R P R =

1

of reached final state$
0

Py

O ROl o

O[O B W NP O

0

of reached final state$
0

P,

O | Ol o

O[O B W NP O

0

of reached final state$
0

P

O[O O|~OINOD|O|O|UO|WO|O|S||O|O|h|O|WO|O|S||O|o|O|~O|INO|D
RPIRRP R RPPRP PR OO0 OO UIOOIS|O|OOIO|UIO|O|S|INNINNNN N o
NINININININN OO0 OoO|0w|| OO0 0|0 OO0 w| W w w W w w wl s
R I I R e e e I I I E RS ES RS Y
N[N R RO NN R g [N N I N N R Mo g || N RO N N[N N N o || 0| anf i on| o i | 5
w|w|w| w| w w w 5w wwwwwws|oo o olooloy|o oo o oo o g
gaiaiaiaaas|faaaaaa AT N NININININEFEID N NNNNN N D

o|lo|o|o|o|o|o|p|o|o|o|o|so|lo|v|o|o|v|o| s o|o|w ||k k| k Ik, ik ko
INEFNENFSEFNENEFSN ES SN SN NN S S S S S N S IS s .

O[O B W NP O
ofr|ojo|ojo

o]

Py

e

Py

init. state | LAS | # fin. st init. state | LAS | # fin. st init. state | LAS init. state [LAS
5 5

ks

0

| eofof =

0

0

2N 51 S Y e
) 0 i
12 51 S Y Y e
v v v v v ve| |
IS 1 S e e

0

x

init. state # fin. st init. state | LAS
0 2

©

e Y Y e

10| o o] o] o] 1]

1
2
3
1
5
6

=

init. # fin. st

state

5 P Y - R Y P P

eafen

o 1 e e e
JES{ P S S S

Figure 2. Binary reduction of partial results
for Example 3.5

3.2.3 Analysis of DFA run method

Sequential method of run of general DFA has time com-
plexity SU(n) = O(n), so it depends only on length of
input text. We can see in Theorems 3.3 and 3.4 that paral-
lel DFA run method depends in addition on the number of
processor§P| and on the number of states of automaidn
being run.

If we suppose that the length of the input text is far
greater than the number of processarsg | P|), we can ig-

nore the barrier pa®(log |P|) in the complexity formula. 3.2.5 Load balancing
This overhead is common in parallel algorithms and barrier
is made only once per run of the algorithm. Contrary to the ! i
sequential run of DFA, the parallel run depends also on theform size of blocks of block data decompostion. We al-

number of state&)|. This dependency is present because most assume cpmputatlon power of |nd|V|dg§I processors
of precomputing possible terminal states (there is a lot of €qual, but it is not always truth and even if it is, we can

subresults computed by each processor, but only on of thenfind out that during computation some processors can be
is used). slower. It can happen e.g. because we do not often have

If we use the trivial reduction shown in Algorithm 3.3, Parallel computer running only our application and sched-

we need timel(n, |P|) = O('%'" +1og |P| + |P|) to run uler of operating systgm qloes not give all of the computation
. 1P| _ resources to our application.
it. If we suppose that number of processtP is much -
. We can run some heuristics on each processor, supposed

smaller than the length of the input textand the number . : .

. . . to be used for running our algorithm, and figure out approx-
of states|@|, we can omit the barrier and reduction parts . . : .

imate computation power. This power can be used to find

of clglr:plexny fo”"”‘ﬂ'a' S0 we get complexiy(n, | P|) = out, how large block of input data can be given to each pro-
O(W)' Speedup is then cessor. This method is easy and working but, as mentioned
above, the computation power given to our algorithm can
change during the run of the algorithm. We can then face
S(n,|P|) =0 " -0 (@) (7) to a situation when our heuristic tells us to give very large
1Qln Q) block of input data to some processor, which will get over-
loaded by some other application somewhere between do-
We can see that parallel speedup depends on the nummg our heuristic and running our algorithm, so we will have
ber of processorg”| and the number of staté®|. If we o wait until this slowly working processor processes large
increase P’|, we speed up the run of the algorithm. Itis ob- pjock of data meanwhile other processors have nothing to
vious that if we run a DFA with more states than the number \york on.
of processors we can use, we do not reach the optimumtime sjng an improvement, where we do not precompute
of computation. On the other hand the run of DFAs with less yectorsR and £ on first processoP,, we can use saved

Load balancing of this method can be achieved by nonuni-

1P|

states is faster than the sequential algorithm. _ computation power by giving larger block of data to this
If we use the parallel binary redu‘gt‘lon shown in Al- processor. Size of this block should be calculated with re-
H H H n . . .

gorithm 3.4, we run DFA in timeO (5 + log|P| + spect to saved iterations fufr cycle, time needed to access

|Q|log | P|). Atthis formula, we can not simply omitthe re- next symbol of input data and time needed to compute tran-
duction part of formulaD(|Q|log | P|) because it depends sition.

not only on the number of processdi?|, but also on the
number of state$)|. As mentioned above, this method
of DFA run is not suitable DFAs with more states than

the number of processors, so if we accept this, we can geiye have introduced the method of run of general DFA on
rough approximation of speedup which is the same as inthe Cluster of workstations with two possible methods of

3.2.6 Summary of DFA run method on COW

Formula 7. reduction of partial results. We have designed algorithm,
which does not need any communication operation during
3.2.4 Method improvements reading of input text, but the penalty for this is necessity

to precompute possible initial states, which has increased
complexity|Q| times.

This method is not suitable for run of DFAs with large
number of states, but may fit for parallel run of small DFAs
with a large input text.

If we look at method of subresult reduction, we see that
the first processoP, never uses items of vectofs and £
not corresponding tinitial state ¢o. It means that when
this processor knows its initial state (and it is always), it
does not need to compute all of the possible values. This
improvement can be easily implemented by modifyiog
cycle, which is nested in input text readinile cycle®. 3.3 Run of DFA on a SMP

As described above, this DFA run negatively depends on
the number of states of automaton being run. This is the In this section we describe a method of parallel run
reason why the automaton should be minimized before theof DFA on a Symmetric shared-memory multiprocessors.
run. Contrary to processors o£EOW, SMP processors have

3This can be done easily by breaking the loop after statgdds com- shared address space, so that each processor can access
puted, or by modifying of iteration condition. memory of another one.

18 e each processor has access to its part of the input text
16 (see below),
e e the numbel P| of processors executing the algorithm
“_ 12 does not change during algorithm execution and all
s - processors know the value.
E \\\
’) . As in DFA run on aCOW, we need to implement vec-
° e tors £ andR. These vectors have similar purpose. Since
‘3 - - . in SMPthe memory is shared, vectofsand for all pro-
number of CPUS cessors compose matrices (vectors of vectors). Vectors in
_) the matrices are indexed by the processor number. Vector
Figure 3. Example of block data decomposi- F and matrix7 are the same (See Formulae 2 and 4 re-
tion using second method, where 15 data el- spectively). Since they are shared, they are set up only at
ements is divided among 6 processors beginning of run of algorithm and then the are used by all

processors only for reading.
Mapping ofpossible initial stateso possible last active
statess implemented as matrig (of size|@Q| x |P]):
3.3.1 Basic DFArun

The idea of a basic DFA run is the same as in DFA run lo

on aCOW*—we divide the input text among processors, I

run the automaton on each of them, supposing each state Llp] = : ; (8)
of automaton as initial state, and join partial results thi® ! '

result of the run. Since we have a share memory at disposal, Q-1

we do not need to send messages in order to join subresulthherep € P is a number of processéy, 0 < j < |Q|, is
At the beginning of the DFA run we can allocate shared i |55t active state assuming that processtarts in statg
memory for all processors, let each processor to work on its ;4 processes paf}, of the input text (i.e 5((1, T,) =1,)

. . i Jr+p) — Y37t
part of memory and compute final result of DFATun using natrix % in which we store count of reached final states

this memory at the end of the DFA run. is implemented as below. The matrix has sjgg x |P|
Remark 3.6 and each processét hasR[P;] part of it. Each itemr; of

Here, we suppose usage@benMPlibrary, its pragmas and this vector contains number of reached final states assuming

functions, so all variables, memory allocations, and mem- initial stateg;:

ory writes in the algorithm, executed before entering a par-

allel section (we use pseudoalgorithm notation, but in the 7o

source code pragmigpragma omp parallel is used) are R[p] = " 9)

made over the shared memory. It means that in the paral- :

lel section these values can be accessed by processors and

even if they are at the beginning of parallel section marked

asprivate, they will contain original values. The reduction of partial results is made either sequen-
) tially (see Algorithm 3.8) by one processor, which accesses

Let M = (Q,%,0,q0,F) be a DFA. Algorithm 3.7

h h DFA SMP using basi shared memory and computes the final result, or by all pro-
shows us a way, how 1o run ona using basiC cagsors using binary reduction (see Algorithm 3.9), where
DFA run. We suppose, that:

more processors access different memory cells and join
them into the final result.

Theorem 3.7
The run of general DFA shown in Algorithm 3.7 using the

« processors are ranked lopntinuous linear sequence seqlgﬁlntlal reduction shown in Algorithm 3.8 runs in time

of IDs starting with zeraand each of them knows its ~ O(7pr +log|P|+ |P[), where|Q| is the number of states
own as a value of variablg;, of automaton/, n is the length of the input text anjd| is
number of processors running this algorithm.

TlQl-1

e each processor has built the transition tahle

e each processor has the set of final stdfes

e processol’, knows which state is the initial statey,

5As we have mentioned in Section 3.2, we can store more complex
4Described in Section 3.2. informations than is the count of reached final states.

Algorithm 3.7 (Basic run of DFA on a SMP)

Input: A transition table7, set of final stateg”, mapping
from possible initial state to possible last visited stéte
and a seR of possibly reached final states of DFA, input
textT = tyts .. .t, and initial stateyy

Output: Output of run of DFA

Method: SetS of active states is used, each processor has
its uniqgue numbef;, number of processors |®|.

forall Py, Py ... Ppj—; doin parallel
J— [Pt
end_position — [(P; + 1)) — 1

for k—0...]Q|—1 do
L[P;][k] < k I« intitialize vectorL «/
R[F;][k] < 0 I« intitialize vectorR =/

endfor

while j < end_position do
for k—0...|Q|—1 do
L[P][k] «— T|[L[P;][k],t;] I evaluate transition/
if L[P;][k] € F then
endif
endfor
J—Jj+1
endwhile
endfor

#pragma omp barrier /x wait for the slowest processef

result «— perform _parallel _reduction()
/x see Binary 3.9 or Trivial 3.8 reductiors

Proof

See the Algorithm 3.7. Al|P| processors in parallel read
n/|P|input symbols (this is achieved lwhile loop). After
reading each of this symbol, offier cycle with |Q)| itera-
tions is performed, so complexity of computation of partial
results isO(L4m).

[P

When we have computed partial results, we need to per-

form the barrier synchronization in order to wait for the
slowest cpu. The barrier has complexi®ylog | P|).

The reduction of results using sequential reduction
shown in Algorithm 3.8 takegP| steps, because it consists
of onefor cycle with | P| iterations. O

Theorem 3.8

Algorithm 3.8 (Sequential reduction for Algorithm 3.7)
Input: All variables and results of Algorithm 3.7 stored in
shared memory and temporary variabdgs,,,, Riemp

Output: Reduced results stored in shared memory
Method: Only one processor performs this reduction,
reads data from shared memory and stores result in vari-
ablesR[0] andL[0]

Ltemp ~— qo
Rtemp —0

for k —0,1,...,|P|—1 do
Rtemp — Rtemp + R[k] [Etemp]
ACtevnp — E[k] [Etemp]

endfor

R[0[go] < Reemp
L[0][qo] < Leemp

Algorithm 3.9 (Binary reduction for Algorithm 3.7)

Input: All variables and results of Algorithm 3.7 stored in
shared memory and temporary variablgs,,,, Riemp
Output: Reduced results stored in shared memory
Method: All processors perform this reduction, read data
from shared memory, write partial results and store final
result in variablesR [0] and £[0]

forall P, Py, ..., P p—; doin parallel
for m < 1,2,...,[log|P|] do
if (P; mod 2™) =0and (P; + 2™ 1) < |P| then
for —0...|Q|—1 do
R[P][x] < R[P][z] + R[P; + 2"][Lp,[2]]
L[P][z] « L[P; + 27 [L[P][]]

endfor
endif

endfor

endfor

of states of automatoi/, n is the length of input text and
| P| is number of processors running this algorithm.

Proof
Complexity of computation of partial results is same as in

The run of general DFA shown in Algorithm 3.7 using the Theorem 3.7. The complexity of reduction is given by Al-

parallel binary reduction shown in Algorithm 3.9 runs in

timeO(% +log | P|+|Q|[log|P|1), where|Q| is number

gorithm 3.9. Here, we neeflog |P|| parallel steps to be
performed. In each of this step, more processors in parallel

join vectorsR and L. This join is executed insidefar cy- 30 L v
cle, which hagQ)| iterations. Complexity of the reduction » paralelIP1=s1
is then|Q|[log | P]].

20

[s]

15

3.3.2 Analysis of DFA run method

ime of execution

We can see, that we get the same complexity as in the run of
DFA on aCOW. In comparsion wittCOW-based algorithm, 5
we do not need to explicitly send messages, but we benefit
from the shared memory.

We can also speed up run of the algorithm by computing
of transition table in parallel and access itin shared mgmor
Against this can be fact that some computers have the access
to shared memory as an expensive operation (e.g. due to
cache coherency overhead, limitations of bus and so on....).

o
0 le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

length of the input text
[symbols]

Figure 4. Execution times of general DFA in
sequential and parallel run on Altix (|Q| = 7)

4 Experiments 1

Algorithms for the parallel run of DFAs and DFAs were
implemented irC programming language usidPI envi-
ronment anddpenMPenvironment. We measured time of
execution orSMPcomputer andcCOW computer.

time of execution/
s]
o

4.1 Used parallel computers

) 2 4 6 8 10 12 14 16

Star Star is a cluster of workstations with 16 nodes (IN- P/ 1Ql

TEL Pentium 11l 733 MHz, 256 MB RAM, HD 30 GB)

interconnected by Myrinet and Ethernet network. Appli- Figure 5. Dependency of execution time of
cation for this cluster was written usifgPI. Because of parallel run of DFA on |P|/|Q] (Altix, [P| = 31,
problems with using standahPI functions handling read- n = 10°)

ing of file, we had to used standa@dunctionsfopen fread,
...etc. A problem we faced to was that we could not up-
load files with experimental input data to individual nodes,

which lead to the fact that all read input data was shared bystatech| — 7. We can see, that time of parallel algorithm is

one node. This disadvantage decreased performance, b&gorse than for sequential. This is caused by collisions on a
cause we were limited by bandwith and latency of network 1,5 overloading the harddrive by multiple file accesses and

and futhermore loss of performance was caused by OVerygher time complexity of parallel algorithm (precompugin
loading of node having input data and its harddrive, which ¢ possible initial states).

could not read data effectively sequentially, but had togum Figure 5 shows a dependency of execution time of par-
in a file as was arriving request from individual nodes. allel run of DFA on|P|/|Q| (Altix, |P| = 31, n = 10%)

This graph shows performance of execution time of parallel
Altix Altix is a symmetric shared-memory multiproces- run related to number of processors to one state of automa-
sor with 32 processors (16X 1,3 GHz 3MB L3 Cache, 16x ton. We can see, that f¢P|/|Q| <1is performance low,
1,5 GHz 6MB L3 cache) interconnected NMAlinknet- byt if we increase the number of processors, we speedup the
work. Each processor has its own local memory, which computation. FotP|/|Q| > 10 performance descends due

is fast and can access to shared memory (but accessing ab collisions on bus and higher time needed for reduction of
shared memory is much slower). As in Star, we can reachresylts.

to a performance bottleneck while accesing one data file by
multiple processors. Also e.g. having of transition table i
shared memory lead to higher execution time. The measur
ing applications were written in C using OpenMP.

Figure 4 shows a comparison of execution time of gen- In this section, we show parallel runs of pattern match-
eral DFA of sequential and parallel run on Altix, number of ing finite automata. These non-general automata can be run

5 Parallel run of pattern searching DFAs

in parallel without neccesity to precompute possibledhiti Algorithm 5.1 (Basic run of k-local DFA)
states, so the complexity of the run does not depend on thelnput: A transition table7, set of final statesF, input
number of states of automaton being run. All these runs aretextT = t1t5...t,, initial stateqy and the length of the

based on synchronization of automaton.. We suppose run-

ning this run on &0OW, because it can be simply executed
also onSMPwith only few modifications.

5.1 Synchronization of Finite automata

In the run of general DFA, we had to use precomputing
of possible initial states, because we do not have any infor-
mation about the last active state of automaton which read
previous block of input text. We did not know in which state
to start the DFA ruf If we restrict the DFA run to subset
of k-local automata, we do not have to precompute possi-

ble initial states, because we can synchronize automatons

in each processor and start DFA run from a correct state.

Definition 5.1 (Synchronizing word)

Let us have a DFAM = (@, %, 9, g0, F). We say that a
wordw = agay . .. a1 is synchronizing foiM if Vp, q €
Q,0(p,w) = 0(q, w).

Definition 5.2 (k-local automaton, synchronizing au-
tomaton)

Let us have a DFAV = (Q, %, 0, qo, F'). We say that au-
tomatonM is k-local if there exists an integér such that
any word of length% is synchronizing. We say, that au-
tomaton is synchronizing, if there exists a ward= >* of
length at leask, which is synchronizing. The numbkican
be called the synchronization delay of automaién

5.2 Parallel run of k-local DFA

5.2.1 Method of the parallel run of k-local DFA

Let M = (Q, X, 0, qo, F') be ak-local DFA, T = t1ts. .. 1,

be an input text an¢lP| be the number of processors run-
ning this DFA. As in methods of run of general DFA, we
need to divide the input text among processors using block
data decomposition, but in this DFA run method, we need
to give to each processor in addition lassymbols of pre-
ceding block of input text, so that blocks overlapgisym-
bols. This overlapping synchronizes automaton into correc
initial state before it reads its part of the input text.

We show this method in Algorithm 5.1. We can see, that
at the beginning of the algorithm the boundaries of the input
text are set using the block data decomposition, then for all
processors (exceft) the left boundary is extended ly
symbols to the left. Of course we should not count reached
final states during synchronizing the automaton. Therefore

we add conditioy > | P; %J to the lastf statement.

SExcept of the first processor, which has this informatione-iitial
statego of the automatonV/ = (Q, %, 6, qo, F)

synchronizing word in variable

Output: Number of reached final states

Method: SetS of active states is used, each processor has
its unique numbeP;, number of processors j®|.

forall Py, P ... Ppj—; doin parallel

j— [P

found < 0/« number of reached final states

if P, >0 then
/x The first proc. does not need to synchronize
JeJj—k
/x Shift the left boundarys/

endif

end_position «— [(P; + 1)
q<—4qo

n

ppl — 1

while j < end_position do
q < Tlg,t;] I« evaluate transition/
if L[i]eF andj > LPZ-%J then
found «— found +1
endif j — j+1

endwhile
MPI _Reducddata found using operatof
store results o)

endfor

for all P doin parallel
return(found)
endfor

Theorem 5.3 Cerny’s conjecture)
If an n-state automaton is synchronizing, there exists a syn-
chronizing wordw of length|w| < (n — 1)2.

Theorem 5.4

The run ofk-local DFA shown in Algorithm 5.1 runs in time
Ok + rp7 1 log |P|), where|Q| is the number of states of
automaton/, n is the length of the input text an®| is the
number of processors running this algorithm.

Proof

See the Algorithm 5.1. All processors execute this algo-
rithm in parallel. It contains onér cycle, which has in
worst casek + % iterations. k is the number of steps
needed to synchronize automaton (i.e. it is the maximal
length of the synchronizing word). At the end of the al-
gorithm, there is one binary reduction, whiklg | P| times

uses binary operater. Complexity is therO(k + & + References
log | PI).
a [HIMMO1] J. Holub, C. S. lliopoulos, B. Melichar, and
L. Mouchard. Distributed pattern matching us-
ing finite automata.J. Autom. Lang. Comb.
Analysis of DFA run method We can see in Theo- 6(2):191-204, 2001.
rem 5.4, that complexity of run df-local DFA depends on S
the length of synchronizing workl. Contrary to the run of [Hol96] J. Holub. Reduced nondeterministic finite au-

general DFA, here is not complexity multiplied bg|. It tomata for approximate string matching. In
means, that if we omit the time needed to reduce results and J. Holub, _ednor,Proceequs of the Prague
expect thek much smaller than the length of the input text Stringologic Club Workshop '9pages 19-27,
(which is usual assumption in pattern matching automata), Czech Technical University in Prague, Czech
we get the speedup: Republic, 1996. Collaborative Report DC-96—
10.
S(n,|P]) = O <IH—++1|P|> =0 (%) [Hol08] J. Holub. Finite automata implementations
TP] T 108 TPl considering CPU cache.Acta Polytechnica
— O(P) (10) 47(6):51-55, 2008.
We can see, that we get the linear speedup for DFAs with[LF80] R. E. Ladner and M. J. Fisher. Parallel pre-
n > |Q|, which is the upper bound of speedup achiveable fix computation. J. Assoc. Comput. Magh.
by parallelization of sequential algorithm. 27(4):831-838, 1980.
Algorithm 5.2 (Construction of DFA for the exact string [Mel95] B. Melichar. Approximate string matching by
matching) finite automata. In V. Hlava¢ and Rsara,
Input: PatternP = p1ps . .. pp- editors, Computer Analysis of Images and
Output: DFA M accepting language(M) = {wP | w € Patterns number 970 in Lecture Notes in
$*) Computer Science, pages 342—-349. Springer-
Method: DFA M = ({QO7 qiy-- -, Q’m}a 27 57 qo0, {qm})l Verlag’ Berlin' 1995.

where the mapping is constructed in the following way: [Mel96] B. Melichar. String matching withi: differ-

foreacha € ¥ do ences by finite automata. IRAroceedings of
3(qgo, a) < {qo} I+ self-loop of the initial state/ the 13th International Conference on Pattern

endfor Recognition volume 1l., pages 256-260, Vi-

for i +—1,2,...,m do enna, Austria, 1996. IEEE Computer Society
< 0(gi-1,pi) Press.

0(qi—1,p:) < qi/x forward transitions/
foreacha € ¥ do
5(qiya) < 6(r,a)

[NKWO05] E. K. Ngassam, D. G. Kourie, and B. W.
Watson. Reordering finite automatata states
for fast string recognition. In J. Holub

engfr;c:for and M. Simanek, editorsProceedings of the
Prague Stringology Conference 'Opages 69—
80, Czech Technical University in Prague,
Czech Republic, 2005.
6 Conclusion and future work [NKWO6] E. K. Ngassam, D. G. Kourie, and B. W.
Watson. On implementation and performance
We have presented implementations of DFA run on two of table-driven DFA-based string processors.
different parallel computer architectures. We first imple- In J. Holub and JZdarek, editorsProceed-
ment parallel run of general DFA. We did some experiments ings of the Prague Stringology Conference, 06
that show it is not so efficient in practice due to bus colli- pages 108—122, Czech Technical University in
sions. Then we select a class of DFA called synchronizing Prague, Czech Republic, 2006.

automata. For this class of DFA we design algorithm for

parallel run that is simpler and it is expected to be prac- [Tho68] K. Thompson. Regular expression search algo-
tically efficient. Our next research will focus on parallel rithm. Commun. ACM11:419-422, 1968.
simulation of nondeterministic finite automata.

