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Abstract 
I muse about some “stringological” questions: Is it possible 
to encode and compress any given string in such a way that 
all redundancy is removed? And, if this not possible: How 
closely could we approximate the ideal aim? My little essay 
is naive in the sense that I have never studied “stringology” 
and coding theory properly – therefore also no literature 
references at the end of this paper. The sole purpose of this 
little sketch is to entertain my colleague Derrick Kourie at 
the occasion of his 60th birthday, for which I wish him all 
the best of happiness as well as many further years to 
come. 

1. Preliminaries 
Let us try to compress strings of text in a fully 
reversible way, such that the result S’ = compress(S) 
can be undone to S = uncompress(S’) without loss of 
information and without any ambiguity. 

We need a text alphabet T, which is here (for the sake 
of intuition) the small Roman alphabet {a, b, ..., y, z}. 

To separate words and sentences from each other 
within a string, we need a blank space symbol ε = “ “ 
as well as a period symbol π = “.” – these control tags 
however do not belong to the texts which we want to 
encode and compress, and they also occur in the code. 

Finally we also need a code alphabet C, which is here 
(for the sake of intuition) the set of natural numbers N 
{1, 2, 3, ...} – though any other alphabet, even T itself 
could be chosen.  

Definition. Let S be a text string consisting of a finite 
number of words (w є T*) which are separated from 
each other by occurrences of ε or π. The weight of a 
word w (in S) is its length |w| multiplied with the 
number #(w) of its occurrences (i.e. repetitions, or 
frequency) in S. The weights of the word separator 
symbols ε and π are defined as Null. ■ 

2. Naive Method 
In the first phase of the procedure, we build a list of 
all words occurring in a given text, and we sort this 
list in a descending order by weight of the words. 

Searching and sorting all those words is certainly an 
expensive task from the perspective of complexity 
theory, however let us naively assume for now that we 
would get all such searching and sorting for free, as a 
birthday present from a friendly oracle demon :-) 
Example.  
S = “ich gehe spazieren. ich gehe in diese richtung.” 

The weights of the words in this text are calculated as 
follows: 2|ich|=6, 2|gehe|=8, 1|spazieren|=9, 1|in|=2, 
1|diese|=5, 1|richtung|=8. Sorting the words from the 
highest weight to the lowest we get the following list: 

1) spazieren // weight 9 

2) richtung // weight 8 

3) gehe  // weight 8 

4) ich  // weight 6 

5) diese  // weight 5 

6) in  // weight 2 ■ 

At this point of the elaboration we can see why the set 
N was chosen as our code alphabet in the introductory 
section: The code “word” which we choose to encode 
a text word is simply the index number of this word in 
the weighted list. Thus, “spazieren” will be replaced 
by “1”, “richtung” will be encoded by “2”, and so on, 
yielding S’ = “4 3 1. 4 3 6 5 2.” 
Obviously it is necessary to keep the coding table as a 
separate data structure in addition to the encoded text 
string S’, otherwise no decoding would be possible 
any more. The length of the coding table itself –in 
addition to the length of the compressed string S’–
puts a heavy tax-burden onto our total compression 
gain; we will come back to this problem in one of the 
following paragraphs. 
In a second phase of the procedure we can try to 
compress the coding table itself! The method for this 
is the same as the method for the compression of the 
original text. In our example of above we detect –with 



help of our friendly search demon– that the little word 
“ich” (index 4) occurs as a sub string within the 
longer word “richtung” (index 2). Consequently we 
can replace the initial coding table with the following: 

1) spazieren 

2) r4tung 

3) gehe 

4) ich 

5) diese 

6) in 

In a further phase of the recursion our friendly search 
demon could detect that the compressed string S’ (see 
above) contains two occurrences of the code phrase “4 
3”:  this is redundancy which must vanish! Finally our 
friendly birthday demon would also detect that the 
tiny string “ie” occurs in the word “diese” as well as 
in the word “spazieren”. Consequently we can 
construct yet another –better– coding table, namely: 

1) spaz8ren 

2) r4tung 

3) gehe 

4) ich 

5) d8se 

6) in 

7) 4_3 // auxiliary binding-symbol “_” 
8) ie 

together with the encoded string S’’ = “7 1. 7 6 5 2.” 
Here we have reached the fixpoint of the iteration: no 
further compressions are possible (based on T and N), 
and all redundancies are eliminated. 
The resulting file F [...], which can obviously be un-
compressed again without any ambiguity or loss of 
information, has then the following contents: 
[7 1. 7 6 5 2 | spaz8ren r4tung gehe ich d8se in 4_3 ie] 
Note that the index numbers <1, 2, ..., 8> of the code 
list do not need to be written explicitly into the file as 
they are represented implicitly by the order of the un-
coding words following S’’ after the separation bar |. 
Further note that the auxiliary binding-symbol “_” is 
necessary such that the code word “4_3” can be 
identified as one item, namely the 7th item in the code 

list, after the list index numbers were removed from 
the result file. 
Question: What have we won? Counting only those 
characters belonging to the text and code alphabets T 
and C (but not the auxiliary symbols “ε“, “_”, “.”, “|”) 
we find: 
|S| = |“ichgehespazierenichgeheindieserichtung”| = 38. 
|F| = |”717652spaz8renr4tunggeheichd8sein43ie”|=37. 
In this tiny example, the compression gain on the 
original text S is almost completely absorbed by the 
tax which must be paid in form of the coding table 
sitting behind S’’ and the separation bar “|” in the file. 
For our example we calculate our total compression 
gain as: G = (1 – 37/38) ≈ 0.026 – only  2.6% percent, 
though the G would have been bigger for longer texts 
which are sufficiently large in comparison to the size 
of the coding table. 

3. Searching Phrases instead of Words 
Reflecting our little example critically, we must ask 
the question: Could we have won more than that? 
Indeed, the answer is: “yes”! Remember how late in 
the process our helpful search demon has detected the 
double occurrence of the sub string “4_3” in the 
intermediate string S’. Code “4_3”, however, 
represented the sub-string “ich_gehe”, which indeed 
occurs twice in the original text S. The sub-string 
“ich_gehe”, however, consisting of 3 + 4 = 7 
characters from T, has a weight of 2 · 7 = 14 in S! 
This means that we had too naively constructed our 
initial table by looking only for repeated occurrences 
of single words – instead of looking for repetitions of 
longer phrases. Had our friendly search demon found 
this longer phrase in the first place, then our coding 
table would have been much more concise: Lines (3) 
and (4) together would have been at the first position 
(due to the highest weight, 14, in S), and line (7) 
would not have been needed at all – thus only five 
lines are needed instead of our initial six, namely: 

1) ich_gehe // weight 14 

2) spazieren // weight 9 

3) richtung // weight 8 

4) diese  // weight 5 

5) in  // weight 2 

Again we apply the coding procedure recursively on 
the table itself, thereby reducing the redundancies of 



each two occurrences of sub-strings “ich” and “ie”. 
The resulting coding table has the form:  

1) 6_gehe 

2) spaz7ren 

3) r6tung 

4) d7se 

5) in 

6) ich 

7) ie 

The sub-string “ich_gehe” will now get code word 
“1”, “spazieren” will get code word “2”, and so on, 
and “ie” will finally get code word “7”. Consequently 
the resulting file F contains:  

[1 2. 1 5 4 3 | 6_gehe spaz7ren r6tung d7se in ich ie] 

Needless to say that the total weight of the original 
text is still |S| = 38, but the total weight of the result F 
(without counting auxiliary symbols which are neither 
in alphabet T nor in alphabet C) is now only |F| = 36. 
In comparison with the previous arrangement (where 
|F| = 37) we have saved 1 weight-unit, and the total 
compression gain is now G = (1 – 36/38) ≈ 0.055, or 
5.5% percent. This is a nice difference in comparison 
to our previous 2.6% percent gain, and it shows the 
worthiness of searching for longer phrases (and not 
only the individual words) in the original text string S. 
However, the computational complexity of the task 
find all repetitions of any multi-word-phrase (which 
our friendly birthday-demon is supposed carry to out) 
is certainly larger than the computational complexity 
of the rather simple task of finding all repetitions of 
single words. 

4. Compression Conflicts 
As soon as we have issued the recommendation to 
search for reoccurrences of multi-word-phrases 
(instead of reoccurrences of single words only) the 
problem arises that two or more of such long 
compressible phrases can overlap. This leads to what 
I would call a compression conflict.  
 
Example.  Let us look at the following sentences (in 
German language, again, just for the fun of it): 

a) “ich habe doch (nie gewonnen).” 

b) “ich habe aber (schon oft gespielt).” 

c) “er habe aber (bereits gewonnen, sagte er).” 

(We ignore the endings of these sentences in the 
brackets as they are not important to the problem 
which we now want to address.) We notice that there 
are two occurrences of the phrase “ich habe”, namely 
in sentences a) and b), as well as two occurrences of 
the phrase “habe aber”, namely in sentences b) and c). 
Moreover we notice that these phrases are not disjoint 
in sentence b) – unfortunately they overlap.  
Definition. In the context of the example of above, 
the set { ich habe aber } is the conflict set. Generally 
speaking, the conflict set is the union-set of all words 
which participate in the same conflict. Moreover, in 
the example of above, the set { habe } is the conflict 
case. Generally, the conflict case is the intersection of 
the overlapping phrases which participate in the same 
conflict. Finally, in our example, the set { ich aber } is 
the conflict context. Generally speaking, the conflict 
context is the difference-set between the conflict set 
and the conflict case. ■ 
How shall we deal with such conflicts when our goal 
is optimal compression? It does not seem very daring 
to conjecture that a greedy compression algorithm, 
which would always choose the first alternative in the 
case of a conflict, would generally not lead to the best 
solution. In the case of a coding conflict, the optimal 
compression algorithm should either: 

• predict (oracle) the optimal choice, or: 
• branch out in two sub-processes, compute 

both alternatives, compare the results, output 
the best and discard the worse. 

Needless to assert that, whereas the second option 
might “only” be extremely expensive, the first option 
might possibly not be computable at all. To illustrate 
the scenario, let us build the two alternative coding 
tables for the example of above, (not taking the parts 
between brackets into account). A first alternative is: 

1) ich_habe // weight 14 

2) aber  // weight 8 

3) doch  // weight 4  

4) habe  // weight 4 

5) er  // weight 2 

 



Proceeding as explained above we can further encode 
the compression table itself, yielding: 

1) i6_4 

2) 7_5 
3) do6 

4) h7e 

5) er 

6) ch 

7) ab 

Remarks. We wrote “7_5” in the second line (and not 
“75”) in order not to get confused with code word 
“75” which also exists in the code alphabet, though it 
is not applied in this example; ditto for “6_4” (instead 
of “64” in the first line). More important: There was 
another coding conflict within the table, namely with 
the words “aber” (line 2) and “habe” (line 4), which 
nicely demonstrates the ubiquitous character of this 
phenomenon. In the micro-conflict within the table, 
the conflict case (in the sense of the definition above) 
is { abe }, the conflict context is { h r } and the whole 
conflict set is { h abe r }. In the 7-line table of above I 
have “just somehow” done the micro-coding without 
any deeper considerations about the micro-conflict on 
the level of single characters within those words. The 
string S =“ich habe doch. ich habe aber. er habe aber” 
will thus be compressed to “1 3. 1 2. 5 4 2” and the 
result file F (with all decompression information) is  
[1 3. 1 2. 5 4 2 | i6_4 7_5 do6 h7e er ch ab], whereby 
|F| =  24. 
For comparison let us now try the second alternative 
of our example conflict set { ich habe aber } (whereby 
the micro-conflict { h abe r } within the table must of 
course be treated in the same way as above; otherwise 
our comparison would be methodologically invalid). 
For the second alternative we start with this initial 
table: 

1) habe_aber // weight 16 

2) ich  // weight 6 

3) doch  // weight 4 

4) habe  // weight 4 

5) er  // weight 2 

 

The words “doch”, “habe” and “er” are placed at the 
same positions (3, 4, 5) as before, yielding now: 

1) 4_7_5 
2) i6 
3) do6 

4) h7e 

5) er 

6) ch 

7) ab 

The two tables to be compared are placed exactly 
opposite of each other in the two columns of this page 
such that direct comparison is as easy as possible by 
simply looking left and right :-) 
String S =“ich habe doch. ich habe aber. er habe aber” 
will now be compressed to “2 4 3. 2 1. 5 1”, and the 
result file F (with all decompression information) is  
[2 4 3. 2 1. 5 1 | 4_7_5 i6 do6 h7e er ch ab], whereby 
|F| =  24, as in the first alternative! 
Here we have thus found a nice little example where it 
does not matter whether we solve the compression 
conflict in this way or in the other way. However: 

• Without having done this comparison step by 
step we would have hardly been able to 
predict (foresee, oracle) this result. 

• From this special little example we may of 
course not conclude that the two (or more) 
alternative solutions to a compression conflict 
would always lead to results of exactly the 
same quality as far as the total weight of the 
output file F is concerned. 

Anyway we have learned that optimal compression in 
all its recursive branches and choice-alternatives with 
all the searching of all the reoccurring phrases both at 
macro- and at micro-level is not at all an easy task. A 
text is optimally compressed when redundancy-free. 

5. Implications of Code Word Lengths 
Text compression, as shown above, would not make 
any sense if the code-words would be longer than the 
words to be encoded. The choice of the code alphabet 
C thus imposes a theoretical upper-bound on the total 
compression gain which can be achieved for texts of 
the original alphabet T. For example, if C = N, the set 
of natural numbers, then it would not make sense to 
encode the little word “ich” with code-word “7126”, 



because |7126| = 4 > 3 = |ich|; the compression gain 
would be negative – a loss rather than a gain. Thus we 
can state that compression reaches its limits when the 
source language consists of huge numbers of tiny 
words for which no target language with even more 
and even tinier words can be found. 
Yet there is room for further tinkering and tampering! 
Example. Imagine that for whatever string S, the 
following word (or phrase) weight table had been 
built: 

1) ... 
2) ... 
3) ... 
4) ... 
5) ... 
6) ... 
7) ... 
8) ... 
9) you 
10)  me 
11) ... 

For some reason, the word “you” had an altogether 
higher weight in text S than the word “me”, therefore, 
according to our weight-based algorithm, “you” was 
put at a lower position than “me” in this index table, 
which means that “You” would have to be encoded by 
“9” whereas “I” would have to be encoded by “10” 
though |me| = |10| = 2 (lexically speaking) – no gain! 
In cases it might be wise to swap positions of words 
in the index table before continuing the procedure of 
compression. However, such word position swapping 
should be applied wisely rather than blindly; the total 
win must be calculated in terms of the weights of the 
words involved. In continuation of the example let us 
consider the following two example cases: 

a) Both “you” and “me” occur exactly once in S, 
thus their weights are 1|you|=3 and 1|me|=2, we 
see that 3>2, therefore “you” has a lower list 
position (9) than “me” (with list position 10). 

b) Whereas “me” occurs now 4 times in S, “you” 
will occur now thrice, such that the weight of 
“you” in S is now 3|you| = 9, whereas 4|me| = 8.  

We calculate the total gains of swapping “you” and 
“me” in the index list. 

a) In the first case, the total weight of “you” and 
“me” together –in the uncompressed text– is  
3 + 2 = 5. 

i. Swapping Index Positions. “you” is 
encoded by “10” and “me” by “9”. 
|10|=2, |9|=1, both occur each once, 
thus the compression result has the 
weight 2 + 1 = 3.  

ii. Keeping Positions as are. “you” is 
encoded by “9” and “me” by “10”. 
|9|=1, |10|=2, both occur each once, 
thus the compression result has the 
weight 1 + 2 = 3. 

b) In the second case, the total weight of “you” 
and “me” together in the uncompressed text is 
9 + 8 = 17.  

i. Swapping Index Positions. “you” is 
encoded by “10”, “me” by “9”. With 
their different occurrence frequency 
we  have 3|10|=6, 4|9|=4, and the 
result of the compression has the 
weight 6 + 4 = 10. 

ii. Keeping Positions as are. “you” is 
encoded by “9”, “me” by “10”. With 
their different occurrence frequency 
we  have 3|9|=3, 4|10|=8, and the 
result of the compression has the 
weight 3 + 8 = 11. 

Thus, in case a) it does not matter whether or not we 
swap the positions of “you” and “me” in the coding 
table; in either way the total compression gain is G = 
(1 – 3/5) = 0.4 (i.e. 40% percent). In case b), however 
we gain G = (1 – 10/17) ≈ 0.41 with position 
swapping, but only G = (1 – 11/17) ≈ 0.35 without. 
The result should not be too surprising, as the whole 
compression system is based on the principle of 
replacing the  heaviest text phrase by the lightest code 
word. 

6. Outlook 
Already 40 years ago (in the same year in which the 
term Software Engineering was coined at the now 
much commemorated NATO Science Conference of 
Garmisch, Germany, 1968, when Derrick was just 20 
years of age), a book was published by Harold Borko 
in which the possibilities of automated text-
abstraction and automated word-index generation 



were discussed.* The dream was to input a text in 
electronic form into some computing machinery, and 
out would come a little abstract-summary of the text. 
Ditto for the generation of index-appendices: input 
would be a book in electronic form, and out would 
come a list of the most important keywords or phrases 
(with page numbers attached) which could help the 
reader-in-hurry to look up certain pages and navigate 
through the book. I believe that my naive little word-
weight-definition (on the first page of this paper) can 
serve as a good starting-point to such an endeavour, 
because the “importance” of a word or phrase in a text 
S is likely related to its numeric frequency. 
Additionally needed, of course, would be a filter-list 
of frequently occurring structure-words (like “the”, 
“and”, “but”, etc.) which do not carry much meaning 
in themselves but rather perform a grammatical role in 
the structuring of meaningful sentences. The number 
of those grammatical structure-words in the lexicon of 
a language is usually very small compared to the size 
of the entire lexicon such that an according filter-table 
should be easy to implement. 
Moreover, the word-weight-method might perhaps 
also be useful for text comparison (such as plagiarism 
detection, etc.) whereby the –let’s say– hundred first 
index positions of the weighted-phrase lists of the two 
texts could be analysed for differences or similarities. 
As mentioned above in the abstract, the sole purpose 
of  my musings was the entertainment of their readers 
at the occasion of Derrick’s 60th birthday. Neither did 
I look into the up-to-date literature on coding and file 
compression theory, nor do I claim any originality for 
my simplistic considerations. In fact I am quite sure 
that much more sophisticated solutions must be long 
known to all the problems which I have sketched in 
this paper. 
 
 
 
 
 
 
 
                                                                 
* Harold Borko (Ed.): Automated Language Processing. John 

Wiley, New York, 1968. US Library of Congress No. 66-26735. 
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