
Musings about Text Redundancy and Text Compression

Stefan Gruner
Dept. of Comp. Science
Universiteit van Pretoria

stefan@cs.up.ac.za

Abstract
I muse about some “stringological” questions: Is it possible
to encode and compress any given string in such a way that
all redundancy is removed? And, if this not possible: How
closely could we approximate the ideal aim? My little essay
is naive in the sense that I have never studied “stringology”
and coding theory properly – therefore also no literature
references at the end of this paper. The sole purpose of this
little sketch is to entertain my colleague Derrick Kourie at
the occasion of his 60th birthday, for which I wish him all
the best of happiness as well as many further years to
come.

1. Preliminaries
Let us try to compress strings of text in a fully
reversible way, such that the result S’ = compress(S)
can be undone to S = uncompress(S’) without loss of
information and without any ambiguity.

We need a text alphabet T, which is here (for the sake
of intuition) the small Roman alphabet {a, b, ..., y, z}.

To separate words and sentences from each other
within a string, we need a blank space symbol ε = “ “
as well as a period symbol π = “.” – these control tags
however do not belong to the texts which we want to
encode and compress, and they also occur in the code.

Finally we also need a code alphabet C, which is here
(for the sake of intuition) the set of natural numbers N
{1, 2, 3, ...} – though any other alphabet, even T itself
could be chosen.

Definition. Let S be a text string consisting of a finite
number of words (w є T*) which are separated from
each other by occurrences of ε or π. The weight of a
word w (in S) is its length |w| multiplied with the
number #(w) of its occurrences (i.e. repetitions, or
frequency) in S. The weights of the word separator
symbols ε and π are defined as Null. ■

2. Naive Method
In the first phase of the procedure, we build a list of
all words occurring in a given text, and we sort this
list in a descending order by weight of the words.

Searching and sorting all those words is certainly an
expensive task from the perspective of complexity
theory, however let us naively assume for now that we
would get all such searching and sorting for free, as a
birthday present from a friendly oracle demon :-)
Example.
S = “ich gehe spazieren. ich gehe in diese richtung.”

The weights of the words in this text are calculated as
follows: 2|ich|=6, 2|gehe|=8, 1|spazieren|=9, 1|in|=2,
1|diese|=5, 1|richtung|=8. Sorting the words from the
highest weight to the lowest we get the following list:

1) spazieren // weight 9

2) richtung // weight 8

3) gehe // weight 8

4) ich // weight 6

5) diese // weight 5

6) in // weight 2 ■

At this point of the elaboration we can see why the set
N was chosen as our code alphabet in the introductory
section: The code “word” which we choose to encode
a text word is simply the index number of this word in
the weighted list. Thus, “spazieren” will be replaced
by “1”, “richtung” will be encoded by “2”, and so on,
yielding S’ = “4 3 1. 4 3 6 5 2.”
Obviously it is necessary to keep the coding table as a
separate data structure in addition to the encoded text
string S’, otherwise no decoding would be possible
any more. The length of the coding table itself –in
addition to the length of the compressed string S’–
puts a heavy tax-burden onto our total compression
gain; we will come back to this problem in one of the
following paragraphs.
In a second phase of the procedure we can try to
compress the coding table itself! The method for this
is the same as the method for the compression of the
original text. In our example of above we detect –with

help of our friendly search demon– that the little word
“ich” (index 4) occurs as a sub string within the
longer word “richtung” (index 2). Consequently we
can replace the initial coding table with the following:

1) spazieren

2) r4tung

3) gehe

4) ich

5) diese

6) in

In a further phase of the recursion our friendly search
demon could detect that the compressed string S’ (see
above) contains two occurrences of the code phrase “4
3”: this is redundancy which must vanish! Finally our
friendly birthday demon would also detect that the
tiny string “ie” occurs in the word “diese” as well as
in the word “spazieren”. Consequently we can
construct yet another –better– coding table, namely:

1) spaz8ren

2) r4tung

3) gehe

4) ich

5) d8se

6) in

7) 4_3 // auxiliary binding-symbol “_”
8) ie

together with the encoded string S’’ = “7 1. 7 6 5 2.”
Here we have reached the fixpoint of the iteration: no
further compressions are possible (based on T and N),
and all redundancies are eliminated.
The resulting file F [...], which can obviously be un-
compressed again without any ambiguity or loss of
information, has then the following contents:
[7 1. 7 6 5 2 | spaz8ren r4tung gehe ich d8se in 4_3 ie]
Note that the index numbers <1, 2, ..., 8> of the code
list do not need to be written explicitly into the file as
they are represented implicitly by the order of the un-
coding words following S’’ after the separation bar |.
Further note that the auxiliary binding-symbol “_” is
necessary such that the code word “4_3” can be
identified as one item, namely the 7th item in the code

list, after the list index numbers were removed from
the result file.
Question: What have we won? Counting only those
characters belonging to the text and code alphabets T
and C (but not the auxiliary symbols “ε“, “_”, “.”, “|”)
we find:
|S| = |“ichgehespazierenichgeheindieserichtung”| = 38.
|F| = |”717652spaz8renr4tunggeheichd8sein43ie”|=37.
In this tiny example, the compression gain on the
original text S is almost completely absorbed by the
tax which must be paid in form of the coding table
sitting behind S’’ and the separation bar “|” in the file.
For our example we calculate our total compression
gain as: G = (1 – 37/38) ≈ 0.026 – only 2.6% percent,
though the G would have been bigger for longer texts
which are sufficiently large in comparison to the size
of the coding table.

3. Searching Phrases instead of Words
Reflecting our little example critically, we must ask
the question: Could we have won more than that?
Indeed, the answer is: “yes”! Remember how late in
the process our helpful search demon has detected the
double occurrence of the sub string “4_3” in the
intermediate string S’. Code “4_3”, however,
represented the sub-string “ich_gehe”, which indeed
occurs twice in the original text S. The sub-string
“ich_gehe”, however, consisting of 3 + 4 = 7
characters from T, has a weight of 2 · 7 = 14 in S!
This means that we had too naively constructed our
initial table by looking only for repeated occurrences
of single words – instead of looking for repetitions of
longer phrases. Had our friendly search demon found
this longer phrase in the first place, then our coding
table would have been much more concise: Lines (3)
and (4) together would have been at the first position
(due to the highest weight, 14, in S), and line (7)
would not have been needed at all – thus only five
lines are needed instead of our initial six, namely:

1) ich_gehe // weight 14

2) spazieren // weight 9

3) richtung // weight 8

4) diese // weight 5

5) in // weight 2

Again we apply the coding procedure recursively on
the table itself, thereby reducing the redundancies of

each two occurrences of sub-strings “ich” and “ie”.
The resulting coding table has the form:

1) 6_gehe

2) spaz7ren

3) r6tung

4) d7se

5) in

6) ich

7) ie

The sub-string “ich_gehe” will now get code word
“1”, “spazieren” will get code word “2”, and so on,
and “ie” will finally get code word “7”. Consequently
the resulting file F contains:

[1 2. 1 5 4 3 | 6_gehe spaz7ren r6tung d7se in ich ie]

Needless to say that the total weight of the original
text is still |S| = 38, but the total weight of the result F
(without counting auxiliary symbols which are neither
in alphabet T nor in alphabet C) is now only |F| = 36.
In comparison with the previous arrangement (where
|F| = 37) we have saved 1 weight-unit, and the total
compression gain is now G = (1 – 36/38) ≈ 0.055, or
5.5% percent. This is a nice difference in comparison
to our previous 2.6% percent gain, and it shows the
worthiness of searching for longer phrases (and not
only the individual words) in the original text string S.
However, the computational complexity of the task
find all repetitions of any multi-word-phrase (which
our friendly birthday-demon is supposed carry to out)
is certainly larger than the computational complexity
of the rather simple task of finding all repetitions of
single words.

4. Compression Conflicts
As soon as we have issued the recommendation to
search for reoccurrences of multi-word-phrases
(instead of reoccurrences of single words only) the
problem arises that two or more of such long
compressible phrases can overlap. This leads to what
I would call a compression conflict.

Example. Let us look at the following sentences (in
German language, again, just for the fun of it):

a) “ich habe doch (nie gewonnen).”

b) “ich habe aber (schon oft gespielt).”

c) “er habe aber (bereits gewonnen, sagte er).”

(We ignore the endings of these sentences in the
brackets as they are not important to the problem
which we now want to address.) We notice that there
are two occurrences of the phrase “ich habe”, namely
in sentences a) and b), as well as two occurrences of
the phrase “habe aber”, namely in sentences b) and c).
Moreover we notice that these phrases are not disjoint
in sentence b) – unfortunately they overlap.
Definition. In the context of the example of above,
the set { ich habe aber } is the conflict set. Generally
speaking, the conflict set is the union-set of all words
which participate in the same conflict. Moreover, in
the example of above, the set { habe } is the conflict
case. Generally, the conflict case is the intersection of
the overlapping phrases which participate in the same
conflict. Finally, in our example, the set { ich aber } is
the conflict context. Generally speaking, the conflict
context is the difference-set between the conflict set
and the conflict case. ■
How shall we deal with such conflicts when our goal
is optimal compression? It does not seem very daring
to conjecture that a greedy compression algorithm,
which would always choose the first alternative in the
case of a conflict, would generally not lead to the best
solution. In the case of a coding conflict, the optimal
compression algorithm should either:

• predict (oracle) the optimal choice, or:
• branch out in two sub-processes, compute

both alternatives, compare the results, output
the best and discard the worse.

Needless to assert that, whereas the second option
might “only” be extremely expensive, the first option
might possibly not be computable at all. To illustrate
the scenario, let us build the two alternative coding
tables for the example of above, (not taking the parts
between brackets into account). A first alternative is:

1) ich_habe // weight 14

2) aber // weight 8

3) doch // weight 4

4) habe // weight 4

5) er // weight 2

Proceeding as explained above we can further encode
the compression table itself, yielding:

1) i6_4

2) 7_5
3) do6

4) h7e

5) er

6) ch

7) ab

Remarks. We wrote “7_5” in the second line (and not
“75”) in order not to get confused with code word
“75” which also exists in the code alphabet, though it
is not applied in this example; ditto for “6_4” (instead
of “64” in the first line). More important: There was
another coding conflict within the table, namely with
the words “aber” (line 2) and “habe” (line 4), which
nicely demonstrates the ubiquitous character of this
phenomenon. In the micro-conflict within the table,
the conflict case (in the sense of the definition above)
is { abe }, the conflict context is { h r } and the whole
conflict set is { h abe r }. In the 7-line table of above I
have “just somehow” done the micro-coding without
any deeper considerations about the micro-conflict on
the level of single characters within those words. The
string S =“ich habe doch. ich habe aber. er habe aber”
will thus be compressed to “1 3. 1 2. 5 4 2” and the
result file F (with all decompression information) is
[1 3. 1 2. 5 4 2 | i6_4 7_5 do6 h7e er ch ab], whereby
|F| = 24.
For comparison let us now try the second alternative
of our example conflict set { ich habe aber } (whereby
the micro-conflict { h abe r } within the table must of
course be treated in the same way as above; otherwise
our comparison would be methodologically invalid).
For the second alternative we start with this initial
table:

1) habe_aber // weight 16

2) ich // weight 6

3) doch // weight 4

4) habe // weight 4

5) er // weight 2

The words “doch”, “habe” and “er” are placed at the
same positions (3, 4, 5) as before, yielding now:

1) 4_7_5
2) i6
3) do6

4) h7e

5) er

6) ch

7) ab

The two tables to be compared are placed exactly
opposite of each other in the two columns of this page
such that direct comparison is as easy as possible by
simply looking left and right :-)
String S =“ich habe doch. ich habe aber. er habe aber”
will now be compressed to “2 4 3. 2 1. 5 1”, and the
result file F (with all decompression information) is
[2 4 3. 2 1. 5 1 | 4_7_5 i6 do6 h7e er ch ab], whereby
|F| = 24, as in the first alternative!
Here we have thus found a nice little example where it
does not matter whether we solve the compression
conflict in this way or in the other way. However:

• Without having done this comparison step by
step we would have hardly been able to
predict (foresee, oracle) this result.

• From this special little example we may of
course not conclude that the two (or more)
alternative solutions to a compression conflict
would always lead to results of exactly the
same quality as far as the total weight of the
output file F is concerned.

Anyway we have learned that optimal compression in
all its recursive branches and choice-alternatives with
all the searching of all the reoccurring phrases both at
macro- and at micro-level is not at all an easy task. A
text is optimally compressed when redundancy-free.

5. Implications of Code Word Lengths
Text compression, as shown above, would not make
any sense if the code-words would be longer than the
words to be encoded. The choice of the code alphabet
C thus imposes a theoretical upper-bound on the total
compression gain which can be achieved for texts of
the original alphabet T. For example, if C = N, the set
of natural numbers, then it would not make sense to
encode the little word “ich” with code-word “7126”,

because |7126| = 4 > 3 = |ich|; the compression gain
would be negative – a loss rather than a gain. Thus we
can state that compression reaches its limits when the
source language consists of huge numbers of tiny
words for which no target language with even more
and even tinier words can be found.
Yet there is room for further tinkering and tampering!
Example. Imagine that for whatever string S, the
following word (or phrase) weight table had been
built:

1) ...
2) ...
3) ...
4) ...
5) ...
6) ...
7) ...
8) ...
9) you
10) me
11) ...

For some reason, the word “you” had an altogether
higher weight in text S than the word “me”, therefore,
according to our weight-based algorithm, “you” was
put at a lower position than “me” in this index table,
which means that “You” would have to be encoded by
“9” whereas “I” would have to be encoded by “10”
though |me| = |10| = 2 (lexically speaking) – no gain!
In cases it might be wise to swap positions of words
in the index table before continuing the procedure of
compression. However, such word position swapping
should be applied wisely rather than blindly; the total
win must be calculated in terms of the weights of the
words involved. In continuation of the example let us
consider the following two example cases:

a) Both “you” and “me” occur exactly once in S,
thus their weights are 1|you|=3 and 1|me|=2, we
see that 3>2, therefore “you” has a lower list
position (9) than “me” (with list position 10).

b) Whereas “me” occurs now 4 times in S, “you”
will occur now thrice, such that the weight of
“you” in S is now 3|you| = 9, whereas 4|me| = 8.

We calculate the total gains of swapping “you” and
“me” in the index list.

a) In the first case, the total weight of “you” and
“me” together –in the uncompressed text– is
3 + 2 = 5.

i. Swapping Index Positions. “you” is
encoded by “10” and “me” by “9”.
|10|=2, |9|=1, both occur each once,
thus the compression result has the
weight 2 + 1 = 3.

ii. Keeping Positions as are. “you” is
encoded by “9” and “me” by “10”.
|9|=1, |10|=2, both occur each once,
thus the compression result has the
weight 1 + 2 = 3.

b) In the second case, the total weight of “you”
and “me” together in the uncompressed text is
9 + 8 = 17.

i. Swapping Index Positions. “you” is
encoded by “10”, “me” by “9”. With
their different occurrence frequency
we have 3|10|=6, 4|9|=4, and the
result of the compression has the
weight 6 + 4 = 10.

ii. Keeping Positions as are. “you” is
encoded by “9”, “me” by “10”. With
their different occurrence frequency
we have 3|9|=3, 4|10|=8, and the
result of the compression has the
weight 3 + 8 = 11.

Thus, in case a) it does not matter whether or not we
swap the positions of “you” and “me” in the coding
table; in either way the total compression gain is G =
(1 – 3/5) = 0.4 (i.e. 40% percent). In case b), however
we gain G = (1 – 10/17) ≈ 0.41 with position
swapping, but only G = (1 – 11/17) ≈ 0.35 without.
The result should not be too surprising, as the whole
compression system is based on the principle of
replacing the heaviest text phrase by the lightest code
word.

6. Outlook
Already 40 years ago (in the same year in which the
term Software Engineering was coined at the now
much commemorated NATO Science Conference of
Garmisch, Germany, 1968, when Derrick was just 20
years of age), a book was published by Harold Borko
in which the possibilities of automated text-
abstraction and automated word-index generation

were discussed.* The dream was to input a text in
electronic form into some computing machinery, and
out would come a little abstract-summary of the text.
Ditto for the generation of index-appendices: input
would be a book in electronic form, and out would
come a list of the most important keywords or phrases
(with page numbers attached) which could help the
reader-in-hurry to look up certain pages and navigate
through the book. I believe that my naive little word-
weight-definition (on the first page of this paper) can
serve as a good starting-point to such an endeavour,
because the “importance” of a word or phrase in a text
S is likely related to its numeric frequency.
Additionally needed, of course, would be a filter-list
of frequently occurring structure-words (like “the”,
“and”, “but”, etc.) which do not carry much meaning
in themselves but rather perform a grammatical role in
the structuring of meaningful sentences. The number
of those grammatical structure-words in the lexicon of
a language is usually very small compared to the size
of the entire lexicon such that an according filter-table
should be easy to implement.
Moreover, the word-weight-method might perhaps
also be useful for text comparison (such as plagiarism
detection, etc.) whereby the –let’s say– hundred first
index positions of the weighted-phrase lists of the two
texts could be analysed for differences or similarities.
As mentioned above in the abstract, the sole purpose
of my musings was the entertainment of their readers
at the occasion of Derrick’s 60th birthday. Neither did
I look into the up-to-date literature on coding and file
compression theory, nor do I claim any originality for
my simplistic considerations. In fact I am quite sure
that much more sophisticated solutions must be long
known to all the problems which I have sketched in
this paper.

* Harold Borko (Ed.): Automated Language Processing. John

Wiley, New York, 1968. US Library of Congress No. 66-26735.

	Preliminaries
	Naive Method

	Searching Phrases instead of Words
	Compression Conflicts
	Implications of Code Word Lengths
	Outlook

