
Random Generation of Unary Finite Automata over the Domain of

the Regular Languages

Lynette van Zijl and Lesley Raitt,
Department of Computer Science, Stellenbosch University, South Africa

lynette@cs.sun.ac.za, lraitt@cs.sun.ac.za
This research was supported by NRF grant number 2053436.

June 5, 2008

Abstract

We show that the standard methods for the random
generation of finite automata are inadequate if con-
sidered over the domain of the regular languages, for
small n. We then present a consolidated, practical
method for the random generation of unary finite au-
tomata over the domain of the regular languages.

1 Introduction

The random generation of finite automata has re-
ceived renewed attention in the recent past [2, 9, 12].
However, and this is somewhat surprising, there has
been no rigorous, general method proposed for the
random generation of the finite automata over the
domain of the regular languages. The random gen-
eration of finite automata has mostly been described
in the context of the random generation of the graph
representing the finite automaton [2, 4, 8, 12]. It
is well-known that different finite automaton graphs
can represent the same language (see Figure 3 for an
example). Therefore, if one randomly generates finite
automata based on their graph representation, one
cannot assume that these automata are indeed ran-
dom (that is, uniformly distributed) over the regular
languages. This limits the scope of any experimental
pattern analysis over the given set of randomly gener-
ated automata, as the pattern analysis can then only
pertain to the finite automata and not to the lan-

guages represented by the automata. Our two main
contributions in this paper are: (a) to show that ex-
isting methods for the random generation of n-state
finite automata are not necessarily valid over the do-
main of the regular languages for small n, and (b) to
give a method for the random generation of unary n-
state finite automata over the domain of the regular
languages, which is valid for all values of n.

We briefly describe the standard approach for the
random generation of finite automata in Section 3. In
Section 4, we then give a method for the random gen-
eration of unary deterministic finite automata over
the domain of the regular languages. We also point
out how to use our method to randomly generate only
minimal finite automata. Finally, we conclude in Sec-
tion 6 and discuss future work on this topic.

2 Background

We assume that the reader has a basic knowledge
of automata theory, as for example in [11]. We also
assume some statistical background as it pertains to
random number generation – a good introduction can
be found in [6].

2.1 Finite Automata

Definition 1 A deterministic finite automaton
(DFA) M is a 5-tuple, where M = (Q,Σ, δ, q0, F ),
such that Q is a finite nonempty set of states, Σ is a

1



finite nonempty alphabet, the transition function δ is
the function δ : Q × Σ → Q, q0 ∈ Q is a start state,
and F ⊆ Q is the set of final states.

The transition function δ can be extended to
strings in the usual way:

δ(q, aw) = δ(δ(q, a), w),

for any a ∈ Σ and w ∈ Σ∗.
A unary DFA (UDFA) is a DFA with one alphabet

symbol, and we assume without loss of generality that
the alphabet of a UDFA is Σ = {a}. We briefly
summarize the relevant properties of UDFAs here.
The reader may also refer to [5, 9] for more details.

A UDFA is said to be complete if for every state
q ∈ Q it holds that δ(q, a) = q′, for some q′ ∈ Q. A
UDFA is connected if for every state q ∈ Q there is
a string w ∈ Σ∗ such that δ(q0, w) = q. Throughout
the rest of this paper, we assume that all UDFAs are
complete and connected.

The states of any complete and con-
nected n-state UDFA may be renumbered as
q0, q1, q2, . . . , qn−2, qn−1, such that state q0 is the
start state and

δ(qi, a) = qi+1, where 0 ≤ i < n− 1, and
δ(qn−1, a) = qk, where 0 ≤ k ≤ n− 1 .

The set of states {qk, qk+1, . . . , qn−1} forms the loop
of the UDFA. Clearly, a UDFA can be fully specified
by its loop value k and its set of final states. In Fig-
ure 1, we illustrate a 4-state UDFA with loop value
1 and final state set {q3}.

Figure 1: A 4-state UDFA with loop value k = 1 and
F = {q3}.

We say that a UDFA M is minimal if there is no
other UDFA with less states which accepts the same
language as M . Also, we say that the loop is mini-
mal if encoding its final and nonfinal states as 1 and
0, respectively, results in a binary word w with no

repeating pattern. That is, there is no word s and
no value t such that w = st. Such words are known
as primitive words. In Figure 1 above, the loop is
encoded as 001, and hence forms a primitive word,
so that the loop is indeed minimal.

We use regular expressions to describe regular lan-
guages in the standard way [11]. A regular expression
is a string of symbols, formed from the given alpha-
bet by concatenation, choice (‘+’), brackets and the
Kleene star. An example of a regular expression is
ε + a + a(aa)∗. We use the designation term for the
substrings separated by the + symbol. Therefore, in
the regular expression ε + a + a(aa)∗, there are three
terms: ε, a, and a(aa)∗. The length of a term in
a regular expression is the number of alphabet sym-
bols in that term. For example, the length of term
a(aa)∗ is three. If two syntactically different regular
expressions represent the same regular language, we
say that the regular expressions are equivalent (oth-
erwise, nonequivalent).

2.2 Random Number Generation

Random number generation (RNG) algorithms gen-
erate sequences of pseudo-random numbers 1, accord-
ing to a certain algorithm. For an algorithm to be
a good RNG algorithm, the numbers in its output
sequence must behave as if they are uniformly dis-
tributed (that is, the numbers must evenly cover the
possibilities over the domain under consideration).
To randomly generate objects such as graphs, trees
or finite automata [1], one typically uses a random
sequence of numbers. Each number is then used to
construct the elements of the object in a unique way.
After constructing the (elements of the) objects from
the sequence of random numbers, we are then assured
that the sequence of these constructed objects is ran-
dom over the domain of all such objects, given that
the objects can be enumerated uniquely.

It is important to note here that, if the original
random sequence of numbers is modified in any way
(say, duplicate numbers are removed), then one can-
not necessarily assume that the resulting sequence

1We take ‘random’ to mean ‘pseudo-random’ unless stated
otherwise.



Figure 2: Uniform distribution (top) and non-
uniform distribution (bottom).

is still random. Similarly, once a number has been
mapped to an object, the objects may not be filtered
(again, for example, by removing duplicate objects)
without possibly compromising the uniform distribu-
tion of the set of objects.

Once an algorithm has been designed to generate a
random sequence, one has to test whether its output
is actually uniformly distributed. Usually, the algo-
rithm is used to produce extremely long sequences of
(supposedly) random output, and the output is then
subjected to various statistical tests [7]. As a first
measure of quality, one can test whether the out-
put indeed seems to be uniformly distributed over
the relevant domain. This is easily visualized in a
two-dimensional scatterplot of points (see [6], pages
442–447 for more detail). We show an example of
a uniform and non-uniform distribution in Figure 2
below. Note how the points in the uniform distribu-
tion evenly covers the area, while in the non-uniform
distribution, there appear many clusters of points as
well as gaps where there are no points at all.

Throughout this paper, we assume that we have
a random number generator which produces evenly

distributed random sequences of numbers.

3 Standard Methods for the
Random Generation of Finite
Automata

The standard approach to the random generation of
finite automata is to generate a random stream of
numbers, and then use these numbers to uniquely
generate the elements of the finite automata [2, 8]. In
particular, if one randomly generates n-state UDFAs,
then the numbers from the random number stream
is used to construct the transition function and the
set of final states 2. Note that different numbers
must map to different objects in the domain in order
to maintain statistical randomness properties. Now,
since two UDFAs with different graph representations
may accept the same language (for an example, see
Figure 3), it follows that the resulting stream of ran-
dom UDFAs is random over the domain of the graphs
of the UDFAs, but not necessarily random over the
domain of the regular languages.

As an example, consider Figure 4. There, we used
the bitstream method [2, 12] to randomly generate
6-state UDFAs, and plotted their graphs over the do-
main of all possible 6-state UDFA graph representa-
tions (note the uniform distribution in the uppermost
scatterplot in Figure 4). For each UDFA, we then
considered the regular language associated with it,
and represented the languages on the bottom scat-
terplot. Here, notice how the dots cluster in the bot-
tom left corner (this represents the empty language).
Clearly, even though the UDFAs were randomly gen-
erated with respect to their graph representations,
this randomness does not translate to randomness
over the domain of the regular languages.

Recent results by Domaratzki et al. [5] on the
number of distinct languages accepted by n-state fi-
nite automata indeed indicate that this standard ap-
proach is not valid if randomly generated automata
are to be considered random over the domain of the

2In a UDFA, there is only one possible start state, and only
one alphabet symbol, which means that it is not necessary to
construct these elements.



Figure 3: Two UDFAs with different graphs that
both accept the language a(aa)∗.

n 5 10 20 50
Ln/Gn 78.75 86.54 93.09 97.24

n 100 400 800
Ln/Gn 98.62 99.65 99.83

Table 1: Significance of domain of regular languages
as n grows.

regular languages, for smaller values of n. In Table 1,
we list the percentage of the number Ln of distinct
languages accepted by n-state UDFAs, divided by the
number Gn of distinct graphs of n-state UDFAs. As n
tends towards infinity, this value tends towards 100%.
That is, as n grows, the difference between the num-
ber of distinct languages and the number of distinct
graphs becomes insignificant. However, for smaller n,
there is a significant difference. Similar results can be
concluded for both nondeterministic unary finite au-
tomata and binary automata, from the results given
by Domaratzki [5]. Hence, there is a need for a ran-
dom generation method for finite automata over the
domain of the regular languages, which is valid for
small n.

4 Random Generation of UD-
FAs over the Domain of the
Regular Languages

In this section, we present a method to randomly gen-
erate a sequence of n-state UDFAs over the domain of
the regular languages. In order to do this, we require
an enumeration of the unary regular languages ac-
cepted by n-state UDFAs, so that we can map a given

Figure 4: Bitstream method over graph domain for 6-
state UDFAs (top) and over regular language domain
(bottom).

random number to a specific regular language (as op-
posed to mapping it to a transition table or graph
representation, as in most previous approaches).

A regular language can be described either by the
finite automaton accepting that language, or by a
regular expression. We choose, without loss of gener-
ality, to describe regular languages with regular ex-
pressions. It is important to note again that there can
be multiple syntactically different regular expressions
that describe the same language – that means that an
enumeration must count syntactically different regu-
lar expressions that accept the same language, only
once. Thus, our enumeration of the unary regular
languages is based on counting only the nonequiva-
lent unary regular expressions.

Once we have an enumeration of the nonequiva-
lent unary regular expressions, we can map our ran-
dom number stream to nonequivalent regular expres-
sions, and hence to nonequivalent regular languages
– this solves the problem inherent to the previous
approaches, since different random numbers cannot
map to the same regular language anymore. Once
the random number is mapped to a regular expres-
sion, we construct the UDFA that accepts the lan-



guage represented by that regular expression.
For the rest of this paper, we take regular expres-

sion to mean a regular expression that represents a
unary language that is accepted by a complete and
connected n-state UDFA.

Our method consists of the following steps:

(1) Generate a random sequence S = s0, s1, . . . of
integers between 0 and 2n − 1.

(2) For each number si in S, associate si with a reg-
ular expression r, where r is the si-th regular
expression in the enumeration of the unary reg-
ular languages accepted by n-state UDFAs.

(3) Construct an n-state UDFA associated with r.
If so specified, construct the minimal UDFA.

Step (2) of the method above requires the map-
ping of a number to a regular expression. In order
to achieve this mapping, we enumerate 3 the unary
regular expressions algorithmically, so that for any
random number si, we can find the si-th regular ex-
pression. For ease of exposition, we consider three
separate classes in the algorithmic enumeration: (i)
unary regular expressions for finite regular languages,
(ii) unary regular expressions that contain terms of
the form a∗, and (iii) unary regular expressions that
contain terms of the form (ay)∗, for y > 1.

This classification is based on the known combi-
natorial values for the number of unary regular lan-
guages, and we now consider the enumeration in de-
tail in the next sections.

4.1 Regular Expressions for Unary Fi-
nite Language

We know that there are exactly 2n−1 distinct fi-
nite languages (see [5], Th. 14(b)) that are accepted
by n-state UDFAs. Therefore, for a given n and

3It is not difficult to enumerate the unary regular expres-
sions [5]; however, the manner of enumeration in our case
must exclude regular expressions which represent the same lan-
guages, and must ideally aid in an efficient implementation.
Lee and Shallit [10] give a general grammar-based approach,
but their enumeration is not easily adaptable for our purposes
as they are concerned with the syntactic length of the regular
expression, and do not exclude equivalent expressions.

given random number si, if si falls in the interval
0 ≤ si < 2n−1, we map si to a regular expression
which represents a finite regular language (if si falls
outside this interval, we map si to a regular expres-
sion which represents an infinite regular language –
see Section 4.2 and Section 4.3).

Within these 2n−1 regular expressions, we have to
consider all the nonequivalent regular expressions in
a certain order. Since the regular expressions rep-
resent finite languages, it is clear that no term may
contain the Kleene star, and that no term can have
length larger than n − 2. Therefore, the regular ex-
pression must be of the form ai1 + ai2 + . . . + aij , for
0 < j ≤ n − 1 and 0 ≤ i1, i2, . . . , ij ≤ n − 2. To ex-
clude equivalent regular expressions, we simply have
to stipulate that 0 ≤ i1 < i2 < . . . < ij ≤ n−2. Gen-
erating all possible regular expressions of the form
described above then uniquely gives all the nonequiv-
alent regular expressions, as required.

An ordering on the regular expressions follows di-
rectly by the number of terms and the lengths of the
terms in the regular expressions, in ascending order.
For example, the regular expression a + aaa would
occur before a+aa+aaa. We partially list the order-
ing of these regular expressions in Table 2 for n = 6.
Here i represents the i-th regular expression in the
ordering.

Hence, given a random integer 0 ≤ si < 2n−1, if si

is the m-th number in this interval, we pinpoint the
correct regular expression by taking the m-th regu-
lar expression in the ascending order of number and
lengths of terms.

Given the regular expression associated with the
random number si, we have to construct a UDFA ac-
cepting the language represented by the regular ex-
pression. That is, we have to specify the set of final
states, and the loop value. Since this is a finite regu-
lar language, we know that the loop may not contain
any final states. Moreover, it is easy to see that the
regular expression contains a term at iff state qt is a
final state in the UDFA, and qt is not in the loop of
the UDFA. Therefore, the number of final states sim-
ply corresponds to the number of terms in the regular
expression, and the set of final states are given by the
length of each term. Note that there may be differ-
ent possible loop values (see Table 2) for each final



i Regular expressions Final states Possible loop values
{q0, . . . , qn−1}

0 ∅ 000000 0,1,2,3,4,5
1 ε 100000 1,2,3,4,5
2 a 010000 2,3,4,5
3 ε+a 110000 2,3,4,5
10 a+aa 011000 3,4,5
11 ε+a+aa 111000 3,4,5
22 a+aa+aaa 011100 4,5
23 ε+a+aa+aaa 111100 4,5
30 a+aa+aaa+aaaa 011110 5
31 ε+a+aa+aaa+aaaa 111110 5

Table 2: Partial enumeration of regular expressions for finite languages accepted by UDFAs with 6 states.

state set – that is, there are different UDFAs corre-
sponding to this regular expression. We then, from
an independent random stream, choose one of these
UDFAs (say the final state with the largest index is
qp, then there are n− 1− p possible loop values, and
if the generated random number is 0 ≤ t < n− 1− p,
we let the loop value be n− 1− t).

Example 1 Suppose we have n = 6, and the random
number 22. Then the associated regular expression is
a + aa + aaa. The random UDFA then has the final
state set F = {q1, q2, q3}, and may have loop value
k = 4, or k = 5 (see Table 2).

4.2 Regular Expressions that include
a∗

For this case, we enumerate all the nonequivalent reg-
ular expressions that contain the Kleene star applied
to one alphabet symbol; that is, a∗.

We list all the regular expressions in this case as
for the finite case, namely, ascending according to
the number of terms and length of terms, excluding
equivalent regular expressions.

We note the following equivalences:

• Any regular expression of the form a∗at is equiv-
alent to ata∗, and hence we need to consider only
regular expressions with terms that end on a∗.

• For 0 ≤ s ≤ t ≤ n − 1, it holds that asa∗ +
ata∗ is equivalent to asa∗. Therefore, all regular
expressions in this case can be simplified to the
form ai1+ai2+. . .+aij−1+aij a∗, for 0 < j ≤ n−1
and 0 ≤ i1 < i2 < . . . < ij ≤ n− 1.

• Finally, as + asa∗ simplifies to asa∗, so that the
condition ij − ij−1 > 1 excludes such equiva-
lences.

A simple counting argument shows that there are
2n−1 non-equivalent different regular expressions to
consider in this case. Therefore, if the original ran-
dom number si falls in the range 2n−1 ≤ si < 2n, we
map si to this second case.

We give a partial listing of the ordering of these
regular expressions in Table 3 for n = 6.

To find a UDFA from the given regular expression,
we use the same approach as in the finite case. We
note that there may be any combination of final states
before the loop, representing the finite part of the
language. Therefore, if the last term in the regular
expression is ama∗, we take every term with length t
less than m, and add the single final state qt to the
set of final states. The last term ama∗ in the regular
expression is then represented by setting states qm

through to qn−1 as final states, and choosing the loop
value k randomly among states qm to qn−1.

Example 2 Suppose we have n = 6, and the ran-
dom number 54. Then the associated regular ex-



i Regular expressions Final states Possible loop values
{q0, . . . , qn−1}

32 a∗ 111111 0,1,2,3,4,5
33 aa∗ 011111 1,2,3,4,5
34 aaa∗ 001111 2,3,4,5
35 ε + aaa∗ 101111 2,3,4,5
48 aa + aaaaa∗ 001001 5
49 ε + aa + aaaaa∗ 101001 5
54 a + aa + aaaaa∗ 011011 4,5
55 ε + a + aa + aaaaa∗ 111011 4,5
62 a + aa + aaa + aaaaaa∗ 011101 5
63 ε + a + aa + aaa + aaaaaa∗ 111101 5

Table 3: Partial enumeration of regular expressions containing a∗ for 6-state UDFAs.

pression is a + aa + aaaaa∗, the final state set is
F = {q1, q2, q4, q5}, and the loop value may be either
k = 4 or k = 5.

4.3 Regular Expressions that include
(ay)∗

For this case, we have to enumerate all the nonequiv-
alent regular expressions that contain a term (ay)∗.

Each regular expression in this case may contain
terms with no Kleene star; this is the finite part.
The regular expression may also contain terms of
the form as(at)∗. Since the regular expression rep-
resents a language accepted by an n-state UDFA,
and a UDFA has only one loop value, it follows
that the regular expression has the general form
ai1(at1)∗ + ai2(at2)∗ + . . . + aij−1(atj−1)∗ + aij (atj )∗,
for 0 < j ≤ n− 1 and 0 ≤ i1 < i2 < . . . < ij ≤ n− 1,
and 0 ≤ tm ≤ n for 1 ≤ m ≤ j, such that all the
non-zero tm are equal.

We generate all possible combinations of the gen-
eral form given above, excluding equivalent regular
expressions. Similar to the a∗ case in Section 4.2,
we note that at1 + at2(as)∗ is equivalent to at1(as)∗

if t2 − s = t1. For example, a + a3 + a5(a2)∗ is
equivalent to a + a3(a2)∗, which is again equiva-
lent to a(a2)∗. Other equivalences occur between
two expressions of the form ai1(at1)∗ and ai1(at2)∗,
where t1 and t2 are not relatively prime. For exam-

ple, a(a6)∗ + a3(a6)∗ + a5(a6)∗ is equivalent to both
a + a3(a4)∗ + a5(a4)∗ and a + a3 + a5(a2)∗. In such
cases, we always enumerate the regular expression
with the smallest value of t in the term (at)∗.

The table for n = 6 is rather large in this case, and
we refrain from listing it.

Given all the nonequivalent regular expressions, we
can generate the UDFA in a similar manner as be-
fore. We generate a final state qt if a term at oc-
curs in the regular expression. For all terms am(as)∗,
we generate final states qm+ps for p ≥ 0 and 0 <
ps ≤ n − 1. An initial loop value of k = n − s is
chosen. However, if either the resulting loop or the
resulting UDFA forms a nonprimitive word w = uv,
then the loop value is chosen randomly from the set
{n− s, n− 2s, . . . , n− vs}.

4.4 Analysis

Having presented a method which purportedly ran-
domly generates UDFAs over the domain of the reg-
ular languages, we now have to test this claim.

In Figure 5 we give a simple distribution analy-
sis for a stream of 2500 randomly generated 6-state
UDFAs based on our method. One can clearly see
that the distribution over the domain of the regular
languages is uniform (compare this to Figure 4).



Figure 5: Randomly generated 6-state UDFAs over
the domain of the regular languages.

5 Random Generation of Mini-
mal UDFAs over the Domain
of the Regular Languages

Our method allows for an almost trivial adaptation
to the generation of minimal UDFAs. We know from
Domaratzki [5] that an n-state UDFA with loop value
k can be minimal only if its loop is minimal, and
states qk−1 and qn−1 have opposite finality. Hence,
for all three cases, we simply have to ensure that
we select a minimal loop, together with the correct
finalities for states qn−1 and qk−1.

For finite languages, the loop value must be n−1 in
order to ensure loop minimality (otherwise, the loop
can be encoded as 0t for some t > 1). Therefore,
all minimal UDFAs in this case have loop value n −
1, with qn−1 a nonfinal state and therefore qn−2 a
final state. We observe from Table 2 that there are
2n−2 such cases. Therefore, to generate a minimal
n-state UDFA, we generate a random number 0 ≤
si < 2n−2, and follow the same procedure as for non-
minimal UDFAs, but make our selection only from
these minimal UDFAs.

The case where the regular expression contains
a∗ follows the same argument as for the finite case:
there are 2n−2 regular expressions that contain a term
an−1a∗, and we can choose from those cases a UDFA
with state qn−1 as one of the final states, and state
qn−2 as a nonfinal state. Again, note that the loop in
the a∗ case must consist of all final states, and there-
fore the only possibility for a minimal loop is the one

where the loop value is n− 1.
For the last case, we choose a loop value such that

the states in the loop form a primitive word w, in
order to ensure a minimal loop. Then we choose the
states before the loop such that state qk−1 has the
opposite finality to state qn−1.

6 Conclusion and Future Work

We pointed out the problem associated with exist-
ing methods for the random generation of finite au-
tomata over the domain of the regular languages, for
small n. We then presented a method for the random
generation of UDFAs over the domain of the regular
languages, which is valid for any value of n.

It may be possible to extend our method to the case
of nondeterministic unary finite automata. However,
for binary automata, the enumeration of the regu-
lar expressions become quite complex, and another
method is needed in this case for small values of n.

References

[1] Barcucci, E., Del Lungo, A., Pergola, E., Ran-
dom Generation of Trees and other Combinato-
rial Objects. Theoretical Computer Science 218
(1999), 219–232.

[2] Champarnaud, J.-M., Hansel, G., Paranthoën,
T., Ziadi, D., NFAs Bitstream-based Random
Generation. Proceedings of the 4th Conference
on Descriptional Complexity of Formal Systems,
August 2002, London, Ontario, Canada.

[3] Champarnaud, J.-M., Paranthoën, T., Random
Generation of DFAs. Theoretical Computer Sci-
ence 330 (2005), 221–235.

[4] De Beijer, N., Watson, B.W., Kourie, D.G.,
Stretching and Jamming of Automata. Proceed-
ings of SAICSIT 2003, Johannesburg, South
Africa, September 2003.

[5] Domaratzki, M., Kisman, D., Shallit, J., On the
Number of Distinct Languages accepted by Fi-
nite Automata with n States. Journal of Au-



tomata, Languages and Combinatorics 7 (2002),
469–486.

[6] Law, A.M., Kelton, D., Simulation Modeling and
Analysis. McGraw-Hill, 2000.

[7] L’Ecuyer, P., Testing Random Number Genera-
tors. Proceedings of the 1992 Winter Simulation
Conference, IEEE Press, Dec. 1992, 305–313.

[8] Leslie, T.K.S., Efficient Approaches to Subset
Construction. MSc thesis, University of Water-
loo, Waterloo, Canada, 1994.

[9] Nicaud, C., Average State Complexity of Op-
erations on Unary Automata. Proceedings of
MFCS’99, Lecture Notes in Computer Science
1672 (1999), 231–240.

[10] Shallit, J., Lee, J., Enumerating Regular Ex-
pressions and their Languages. Proceedings of
CIAA2004, Lecture Notes in Computer Science
3317 (2005), 2–22.

[11] Sipser, M., Introduction to the Theory of Com-
putation. PWS Publishing Company, 1997.

[12] Van Zijl, L., Random Number Generation
with Symmetric Difference NFAs. Proceedings of
CIAA2001, Lecture Notes in Computer Science
2494 (2002) 263–273.


