
Software and Inventive Ideation

Marlene Ross
260 Surrey Avenue

Ferndale, 2194, RSA
+27 84 811 3795

marlene.ross@sitwala.com

ABSTRACT
A plethora of creative thinking techniques and
invention heuristics exist to guide problem
solvers towards innovative solutions. One of the
problems that one is faced with is the selection
of the appropriate technique for a specific
problem, since none of them covers the full
spectrum of approaches towards problem
solving. A recent model that attempts to capture
the essence of all of these techniques and
heuristics, facilitates a more generic approach.
This model is leveraged to construct Ideation
Domains for software development.

Keywords
Innovation, creative thinking techniques,
invention heuristics, inventive principles, TRIZ

INTRODUCTION
Innovation is a concept that is important to
software practitioners and researchers alike. For
the former an innovative product could mean
having the edge over competitors in the market,
which usually translates into financial gain. For
software researchers, innovation is what it is all
about: finding a novel solution to a problem in
order to make a contribution to the science of
computing. Inventive ideation can be defined as
creating a range of innovative ideas, alternatives
and options that potentially meet the
requirements of a problem.
What makes an idea innovative or creative?
Novelty and value are recurring themes in the
literature when evaluating ideas for their
creativity. The idea or the approach that is
followed must be new within its context. Boden
captures it very eloquently: “Our surprise at a
creative idea recognizes that the world has turned
out differently not just from the way we thought
it would, but even from the way we thought it
could” [1]. However, without an application the
idea is a mere eccentricity [1], therefore the idea
must also have an impact or lasting influence,
enhancing the quality of life in some way” [2].

The aim of this paper is to provide a short
summary of the research activities in the field of
creative thinking and invention heuristics in
general, then to investigate related research in
the software development domain and finally to
present Ideation Domains for software
development.

DELIBERATE CREATIVITY

Deliberate creativity, or the use of specific
thinking techniques in order to improve the skills
of people in creative problem-solving and
invention, is a research topic that has received
much attention over the past few decades, not
only in academic circles, but also in popular
literature.

Creative Thinking Techniques

Consider Edward de Bono’s books on lateral and
parallel thinking. De Bono coined the term
'lateral thinking' in his book The Use of Lateral
Thinking, published in 1967 [3]. De Bono
defines lateral thinking as “methods of thinking
concerned with changing concepts and
perception”. The method encourages reasoning
in way that is not immediately obvious and about
ideas that may not be obtainable by using only
traditional step-by-step logic. More recently he
published a book on parallel thinking [4], which
advocates applying multiple (possibly
contradicting) trains of thought to the same
problem. Arguments that are contradictory are
not argued out, but are presented in parallel. The
solution is based on the contributions of these
multiple trains of thought. This approach to
creative thinking has been popularised by De
Bono’s Six HatsTM method [5].

Creative thinking methods can be divided into
two broad categories, namely:

• Linear or focusing techniques. The
problem space is explored
incrementally (e.g. by using checklists
or by sequentially tweaking individual
parameters).

• Random or intuitive techniques. This is
often done by generating remote or
random analogies. These are viewed as
intermediate stepping-stones (or
‘intermediate impossibles’) and the idea
is that this step should be followed by a
process of extracting a key principle,
focusing on the differences or
identifying any direct value of the
random stimulation or provocation.

Invention Heuristics

An alternative approach towards creative
problem-solving is to apply invention heuristics.
These heuristics are based on experience, best
practices and rules of thumb that have been
acquired over several years. The most well-
known methodology in this field is called TRIZ
(pronounced ‘trees’). It was developed by
Genrich Altshuller [6] and others between the
late 1940's and 1980's. It is the Russian acronym
for what can be translated as 'the theory of
inventive problem-solving'. While working in
the patent department of the Soviet navy,
Altshuller surmised that it should be possible to
derive some generic inventive principles by
studying existing patents. His goal was to
provide these generic inventive principles as a

guide to find the ideas most likely to lead to
innovative solutions.

Altshuller and his team studied over 40 000
patents to come up with 40 Inventive Principles
(IPs) that may be used to manipulate 39
engineering parameters. One of the most
prominent tools of the TRIZ methodology is a
Contradiction Matrix (CM). It is based on the
notion that there is often a trade-off between
parameters. The matrix contains 39 rows and 39
columns representing the 39 engineering
parameters mentioned earlier. Each row
represents one of the engineering parameters to
improve while the columns represent the
parameters that could be adversely affected by
improving that specific parameter. The entry in
the cell at the intersection of the row and column
contains the numbers of the Inventive Principles
that could be applied to resolve the contradiction.
Multiple IPs can be present in a cell and the
order in which they appear indicates the
frequency with which they have been identified
in the patents that were studied. The original
CM was based on mechanical engineering
systems as is evident from the list of parameters
in Table 1 [7].

1. Weight of moving object 21. Power
2. Weight of binding object 22. Waste of energy
3. Length of moving object 23.Waste of substance
4. Length of binding object 24. Loss of information
5. Area of moving object 25. Waste of time
6. Area of binding object 26. Amount of substance
7. Volume of moving object 27. Reliability
8. Volume of binding object 28. Accuracy of measurement
9. Speed 29. Accuracy of manufacturing
10. Force 30. Harmful factors acting on object
11. Tension, pressure 31. Harmful side-effects
12. Shape 32. Manufacturability
13. Stability of object 33. Convenience of use
14. Strength 34. Repairability
15. Durability of moving object 35. Adaptability
16. Durability of binding object 36. Complexity of system
17. Temperature 37. Complexity of control
18. Brightness 38. Level of automation
19. Energy spent by moving object 39. Productivity
20. Energy spent by binding object -

Table 1: The 39 Parameters used in the TRIZ Contradiction Matrix

The Inventive Principles are given below in Table 2:

Inventive Principle Description
1. Segmentation 1.1 Divide an object into separate independent

 parts or sections.
1.2 Make an object easy to put together and take apart.
1.3 Increase the degree of fragmentation or
 segmentation.

2. Taking out 2.1 Take out an undesired part or function of the object.
2.2 Take out the cause or carrier of an undesired
 property or function.

3. Local quality 3.1 Change the structure or environment of an object
 from uniform to non-uniform.
3.2 Make each part of an object function in conditions
 most suitable for its operation.
3.3 Make each part of an object fulfill a different and
 useful function.

4. Asymmetry 4.1 Change the shape from symmetrical to asymmetrical.
4.2 If an object is already asymmetrical, increase the
 degree of asymmetry.

5. Merging 5.1 Bring closer together identical or similar objects,
 assemble similar parts to perform parallel operations.
5.2 Make operations parallel, bring them together in
 time.

6. Universality 6.1 Make an object that performs multiple
 functions, thereby eliminating the need for multiple
 objects.

7. Nested doll 7.1 Put one object inside another.
7.2 Allow one object to pass through a cavity in the
 other (telescopic effect).

8. Anti-weight 8.1 To counter the weight of an object, merge it with
 others that provide lift.
8.2 To compensate for the weight of an object, make it
 interact with the environment to provide buoyancy,
 etc.

9. Preliminary anti-action 9.1 Where an action has both harmful and useful effects,
 replace it with anti-actions to control the harmful
 effects.
9.2 Create actions or stresses beforehand in an object
 that will oppose known undesirable actions or
 stresses later on.

10. Preliminary 10.1 Perform the required change of an object (either
 fully or partially) before it is needed.
10.2 Pre-arrange objects such that they can come into
 action at the most convenient place and not losing
 time for their delivery.

11. Beforehand cushioning 11.1 Prepare emergency means beforehand to
 compensate for the potentially low reliability of an
 object.

12. Equipotentiality 12.1 In a potential field, limit position changes.
13. ‘The other way round’ 13.1 Use an opposite or inverse action to solve the

 problem.
13.2 Instead of the action dictated by the requirements,
 implement the opposite action.
13.3 Make movable objects fixed, and fixed objects
 movable.

Inventive Principle Description
13.4 Turn the object or process 'upside down'.

14. Spheriodality 14.1 Instead of rectilinear parts, surfaces or forms, use
 curvilinear ones.
14.2 Use rollers, balls, spirals, and domes.
14.3 Change linear motion to rotary motion, use
 centrifugal forces.

15. Dynamics 15.1 Allow or design characteristics of an object,
 environment or process to change to be optimal or
 find the optimal operating condition.
15.2 Divide an object into parts capable of moving
 relative to each other.
15.3 If an object or process is rigid, make it movable or
 adaptive.

16. Partial, satiated or excessive action 16.1 If 100% of the objective is hard to achieve using a
 given solution or method, use 'slightly less' or
 'slightly more' of the same method.

17. Another dimension 17.1 Move an object in two or three-dimensional space.
17.2 Use a multi-storey arrangement rather than single-
 storey.
17.3 Tilt or re-orientate the object, lay it on its side.
17.4 Use another side of a given area.

18. Mechanical vibration 18.1 Cause an object to oscillate or vibrate.
18.2 Increase or change the frequency of vibration, or
 use its resonant frequency.
18.3 Use piezoelectric vibrators instead of mechanical
 ones.

19. Periodic action 19.1 Replace continuous actions with periodic or
 pulsating actions.
19.2 If an action is already periodic, change the
 magnitude or frequency of periodic actions.

20. Continuity of useful action 20.1 Make all parts work at full load, all the time.
20.2 Eliminate idle or intermittent actions or work.

21. Skipping 21.1 Conduct a process, or certain stages (e.g. harmful or
 hazardous operations) at very high speed.

22. ‘Blessing in disguise’ 22.1 Use harmful factors (e.g. harmful or hazardous
 operations) to achieve a positive effect.
22.2 Eliminate primary harmful action by adding
 another harmful action to resolve the problem.
22.3 Amplify a harmful factor to such an extent that it is
 no longer harmful.

23. Feedback 23.1 Introduce feedback to improve a process or action.
23.2 If feedback is already used, change its magnitude or
 influence in accordance with operating conditions.

24. Intermediary 24.1 Use an intermediary carrier article or process.
24.2 Merge one object temporarily with another (which
 can easily be removed).

25. Self-service 25.1 Make an object serve or organize itself by
 performing auxiliary helpful functions.
25.2 Make an object perform supplementary or repair
 operations.
25.3 Use waste resources, energy or substances.

26. Copying 26.1 Use simple and inexpensive copies instead of
 unavailable, expensive, fragile objects.
26.2 Replace an object or process with an optical copy.

Inventive Principle Description
26.3 If visible copies are used, move to infrared or
 ultraviolet copies.

27. Cheap short-living objects 27.1 Replace an expensive object with a multitude of
 inexpensive objects, compromising certain qualities
 (e.g. service life).

28. Mechanical substitution 28.1 Replace a mechanical means with a sensory
 (optical, acoustic, taste or smell) means.
28.2 Use electric, magnetic and electromagnetic fields to
 interact with the object.
28.3 Change from static to movable fields.
28.4 Use fields in conjunction with field-activated (e.g.
 ferromagnetic) particles.

29. Pneumatics and hydraulics 29.1 Use gases and liquids instead of solid parts.
29.2 Use Archimedes forces to reduce the weight of an
 object.
29.3 Use negative or atmospheric pressure.
29.4 A spume or foam can be used as a combination of
 liquid and gas properties.

30. Flexible shells and thin films 30.1 Use flexible shells and thin films instead of 3-D
 structures.
30.2 Use flexible and thin films to isolate an object from
 its environment.

31. Porous materials 31.1 Make an object porous or add porous elements.
31.2 If an object is already porous, use the pores to
 introduce a useful substance or function.

32. Colour changes 32.1 Change the color of an object or its external
 environment.
32.2 Change the transparency of an object or its
 environment.
32.3 In order to observe things that are difficult to see,
 use coloured additives, or luminescent tracers.

33. Homogeneity 33.1 Make objects interact with a given object of the
 same material (or identical properties).

34. Discarding and recovering 34.1 Make portions of an object that have fulfilled their
 functions go away (discard, dissolve, evaporate,
 etc.).
34.2 Conversely, restore consumable parts of an object
 directly in operation.

35. Parameter changes 35.1 Change an object’s physical state (e.g. to a gas,
 liquid or solid).
35.2 Change the concentration or consistency.
35.3 Change the degree of flexibility.
35.4 Change the temperature, pressure, etc.

36. Phase transitions 36.1 Use phenomena that occur during phase transitions
 (e.g. volume changes).

37. Thermal expansion 37.1 Use thermal expansion (or compression) of
 materials.
37.2 If thermal expansion is used, use multiple materials
 with different coefficients of thermal expansion.

38. Enriched atmosphere 38.1 Replace common air with oxygen-enriched air.
38.2 Replace enriched air with pure oxygen.

39. Inert atmosphere 39.1 Replace a normal environment with an inert one.
39.2 Add neutral parts, or inert additives to an object.

40. Composite materials 40.1 Change from uniform to composite (multiple)

Inventive Principle Description
 materials.

Table 2: Altshuller’s 40 Inventive Principles

The TRIZ methodology has since been adapted
to suit many other fields.

A Generic Model for Inventive Ideation

The problem with the plethora of creative
thinking mechanisms and invention heuristics is
exactly that: there are so many to choose from,
and even when a particular technique is selected
it is debatable whether it is the optimum
selection for the specific problem. For example,
if the TRIZ methodology is used, the random
stimulation technique is not applied, because the
methodology is based on the concept of

tweaking individual parameters in an incremental
fashion. If a random stimulation technique is
used, one is left to wonder whether better results
would not have been obtained if a more
structured technique had been employed. In [2]
a model is proposed that attempts to capture the
essence of all of these techniques and heuristics
in order to facilitate a more generic approach. It
is demonstrated that the 10 mechanisms listed
below underpin most of the creative thinking
techniques and invention heuristics found in the
literature.

Theme Mechanism Description
Separate 1. Segment Increase the modularity of the object or make it segmentable. The resultant

parts remain in the same place.
 2. Re-move-

ment
This mechanism covers the concepts of removing and movement. Move a
part away from the object, either temporarily (movement) or permanently
(removing).

Change 3. Adjust Incrementally change problem attributes.
 4. Distort Deliberately change parameters outside their normal range to provoke

thinking. The purpose is to create ‘intermediate impossibles’. (This
mechanism is particularly popular in lateral thinking.)

Copy 5. Associate Produce an analogy that can be copied or borrowed from in order to solve the
problem. Consider concepts that are associated with the features of the
object.

 6. Random
Stimulation

Random stimulation can be generated for example by randomly selecting
words or pictures. It is generally more effective in ‘fuzzy’ problem areas that
are broadly defined.

Combine 7. Re-arrange Form new combinations or change traditional relationships between objects.
 8. Add Add new features or functions.
Convert 9. Other – Use Remove the object from its normal environment to fulfill a different function.

Introduce another object to provide the same function.
 10. Transform Transform the problem or its elements to a different domain in which novel

insights may be gained to solve the problem.
Table 3: The Generic Mechanisms of Inventive Ideation

The diagram below visually conveys the
following three features of the model [2]:

• Frequency. Some mechanisms are
applied more often than others in the
TRIZ methodology and other creative
thinking techniques. This is indicated
by the clockwise arrangement of the
mechanisms, with the Adjust/Distort
mechanisms being used most often and
the Other-Use / Transform mechanisms
being used least often.

• Types of problems. The top half of the
model is predominantly concerned with

temporal, physical and sensory
attributes of the objects (e.g. colour,
action, function and size). The lower
half of the model is generally applied to
problems that involve objects and their
parts or their environment.

• Metaphorical distance. The distance of
the mechanism from the centre of the
model represents the metaphorical
distance that the mechanism removes
the thinking from the problem. For
example when using the Adjust
mechanism, attributes are tweaked

incrementally. When applying the
Distort mechanism, the attributes are

modified beyond their normal ranges.

Problem

Transform Other-Use Associate
 Random

Distort

Adjust

Re-
mov

e

Seg
men

t

Add

Rearrange

Change

Convert Analogy

CombineSeparate

Figure 1: Generic Model for Inventive Ideation

The above generic model of mechanisms of
inventive ideation has been integrated with a
system model for physico-mechanical systems
[2], i.e. it has been shown how these mechanisms
could be applied to physico-mechanical systems.

SOFTWARE AND INVENTIVE IDEATION

This section discusses some of the research that
has been done regarding inventive ideation in
software systems.

Software Inventions

This topic begs the question: What is a software
invention? One would think that the obvious
way to find an answer is to analyse software
patents. After all, the TRIZ methodology is
based on the study of patents. (It is estimated that

over the years more than two million patents in
many industries and locations have been studied
to amount to an effort of about 35 000 man-
years![2]). However, there are a number of
reasons why software patents do not provide a
true representation of software innovation:

• Many software innovations occurred
long before software could be patented
[8].

• There is a large lobby against patenting
of software, in particular those who
engage in writing open source [9].

• The huge gap between the time that
software programs came into existence
and the time when software patents
became available has caused in a lack of
material at the Patent Offices, resulting
in the granting of many patents that are

not truly novel [10]. Many examples of
trivial software patents and ones that are
not truly inventive can be found in [11].

Wheeler [8] offers the following definition of a
software innovation: “it has to be a technological
innovation that impacts how computers are
programmed (e.g., an approach to programming
or an innovative way to use a computer) “.
Many examples of software innovations can be
found in [8], such as the Turing machine, the
first assembler, the first compiler, the stack

principle, semaphores, structured programming,
object-oriented programming, spreadsheets, the
use of the mouse, Graphical User Interfaces, etc.

Software and Invention Heuristics

In recent years a great deal of research has been
done on how to apply the TRIZ methodology to
software [12, 13, 14, 15, 16]. Instead of
Altshuller's 39 parameters, Mann [14] identified
21 parameters for software, as presented in Table
4.

1. Size (static) 12. Adaptability / Versatility
2. Size (Dynamic) 13. Compatibility / Connectability
3. Amount of data 14. Ease of use
4. Interface 15. Reliability / Robustness
5. Speed 16. Security
6. Accuracy 17. Aesthetics / Appearance
7. Stability 18. Harmful effects on system
8. Ability to detect / measure 19. System complexity
9. Loss of time 20. Control complexity
10. Loss of Data 21. Automation
11. Harmful effects generated by system -

Table 4: The 21 Parameters that constitute the sides of the Contradiction Matrix for Software [14]

Software analogies for the 40 IPs in TRIZ have
been described in [12, 13, 14, 15]. Table 5 gives
descriptions and examples of each principle. In

the cases where the original principles were very
system-specific, the new principles have been
shown in italics.

Name [14] Description [12, 13] Examples [12, 13]
1. Segmentation 1.1 Divide a system into

 autonomous components.

1.2 Separate similar functions
 and properties into self-
 contained program elements
 (modules).

1.3 Increase the level of
 granularity until a known
 atomic threshold is reached.
 (The atomic threshold is the
 smallest structural unit of an
 object or component; e.g. bits
 can be thought of as atomic in
 the context of an encoding
 scheme.)

1.1 Intelligent agents can operate
 independently of each other,
 achieving a common goal.
1.2 C++ templates provide a
 means to containerize code so
 as to make the runtime
 execution of this code
 modular.
1.3 Fragmentation of Confidential
 Objects. This idea, based on
 object fragmentation at design
 time, is to reduce processing in
 confidential objects; the more
 non-confidential objects that
 can be produced at design
 time, the more application
 objects can be processed on
 un-trusted shared computers.
 The atomic threshold is where
 the confidential object is
 segmented to the point where
 it is no longer valid as a
 confidential object.

2. Extraction 2. Given a language, define a 2. Extraction of Text in Images. A

Name [14] Description [12, 13] Examples [12, 13]
representation for its grammar
along with an interpreter that uses
the representation to
extract/interpret sentences in the
language.

text segmentation technique that is
useful in locating and extracting
text blocks in images. The
algorithm works without prior
knowledge of the text orientation,
size or font. It is designed to
eliminate background image
information and to highlight or
identify the regions of the image
that contain text.

3. Local quality 3. Change an object’s
classification in a technical
system from a homogenous
hierarchy to a heterogeneous
hierarchy.

3. Non-uniform access algorithms.
In a wireless environment,
information is broadcast on
communication channels to clients
using powerful, battery-operated
palmtops. To conserve the usage
of energy, the information to be
broadcast must be organized so
that the client can selectively tune
in at the desirable portion of the
broadcast. Most of the existing
work focuses on uniform
broadcast. However, very often, a
small amount of information is
more frequently accessed by a
large number of clients while the
remainder is less in demand.
Using the local quality principal,
non-uniform algorithms can be
developed that predict the suitable
access behavior for a particular
operation.

4. Asymmetry 4. Change the asymmetry of a
technical system in order to non-
uniformly affect a desired result
of a computation.

4. Suppose we have balls and bins
processes related to randomized
load balancing, dynamic resource
allocation, or hashing. Suppose n
balls have to be assigned to n bins,
where each ball has to be placed
without knowledge about the
distribution of previous places
balls. The goal of the algorithm is
to achieve an allocation that is as
even as possible so that no bin
gets much more balls than the
average.

5. Combination 5. Make processes run in parallel. 5. Synchronize threads of
execution in time. The
synchronized primitive, the
monitor, “consolidates” threads of
different priority into a master
arbitrator that determines which
thread gets the processor and
when.

6. Universality 6. Make a technical system
support multiple and dynamic

6. Based on a user’s login
preferences a context exists as the

Name [14] Description [12, 13] Examples [12, 13]
classifications based on context.

result of a need to make behavior
specific. Depending on the
situation or context, the technical
system will show a characteristic
identity, with contextual
properties (or in general,
contextual behavior).

7. 'Nested doll' 7. Inherit functionality of other
objects by “nesting” their
respective classes inside a base
class.

7. Nested objects in object-
oriented system. Objects reside
inside other objects to enhance
services and functionality; this
takes place by “nesting” classes
inside other classes at design time.

8. Counter-balance 8. Use sharing to support large
numbers of fine-grained objects
efficiently to counter dynamic
loads on a technical system.

8. A shared object that can be used
in multiple contexts
simultaneously; it acts as an
independent object in each context
– it is indistinguishable from an
instance of the object that’s not
shared.

9. Prior counter-action 9. Perform preliminary processor
actions in system that will
improve a later computation.

9. Reverse lines of text before
matching line-breaks to increase
match pattern efficiency.

10. Prior action 10. Same as above. 10. The Java Virtual Machine
prepares textual “code” into an
intermediate form before
executing it and/or compiling it to
a machine-specific binary.

11. Prior cushioning 11. Use an algorithm that handles
worst-case harmful effects and
maintains global invariance.

11. Fair scheduling in wireless
packet networks.

12. Remove tension 12. Change the operational
conditions of an algorithm so as
to control the flow of data into
and out of a process.

12. A transparent persistent object
store.

13. 'The other way round' 13. Store transactions in reverse
order for backing out.

13. Recovery and backtracking
systems (database).

14. Loop 14. Replace linear data types with
circular abstract data types.

14. The bounded buffer data
structure provides an unlimited
storage mechanism for storing
digital information such as
program variables. This circular
structure is similar to Altshuller’s
circular runway analogy (except
that his planes will get off the
runway or get run over, likewise
the programmer needs to ensure
that valid data are used before the
processor completes a write to the
same location in the bounded
buffer).

15. Dynamics 15. Same as above. 15. Dynamic Linked Libraries
(DLLs).

16. Slightly less / slightly more 16. Increasing the performance of 16. When performance

Name [14] Description [12, 13] Examples [12, 13]
measurable and deterministic
computations by perturbation
analysis.

measurements are made of
program operations, actual
execution behavior can be
perturbed. For example, in
synchronization, the measurement
and subsequent analysis of
synchronization operations (e.g.,
barrier, semaphore, and
advance/await synchronization)
can produce accurate
approximations to actual
performance behavior. Therefore,
by using perturbation analysis, we
can do slightly more or less to
affect the performance output of
our computation.

17. Another dimension 17. Use a multi-layered assembly
of class objects instead of a single
layer.

17. Aggregation of inherited
objects towards a new
arrangement of functionality.

18. Vibration 18. Change the rate of an
algorithm execution in the
context of time until the desired
outcome is achieved.

18. This requires a visual analogy
of periodically changing the rate
of an algorithm on an object that
in turn resonates the overall
system to an ideal state.

19. Periodic action 19. Instead of performing a task
continually, determine the time
boundaries and perform that task
periodically.

19. Scheduling algorithms (e.g.,
alert mechanisms, cron-jobs,
replication events).

20. Continuity of useful action 20.1 Develop a fine-grained
 solution that utilizes the
 processor at full load.

20.2 Develop a fine-grained
 concurrent solution that
 eliminates all blocking
 processes and/or threads of
 execution

20.1 Near video-on-demand
 (NVoD) scheduling of
 movies of different
 popularities for maximum
 throughput and the lowest
 average phase offset.
 Continuity of video based on
 using buffering (e.g., Real
 Player or Windows Media
 Player).
20.2 Barrier synchronization
 solutions; read and write
 database transaction
 algorithms.

21. Hurrying 21. Conduct the transfer of data
in a burst mode just before a
worst-case scenario.

21. Using a burst-level priority
scheme for bursty traffic in
Asynchronous Transfer Mode
(ATM) networks. Statistical gain
is achieved in ATM networks by
making bursty connections share
resources stochastically. When
connections with different Quality
of Services (QOS) requirements
share the same resources, the
highest requirements would
typically be the limiting factor in

Name [14] Description [12, 13] Examples [12, 13]
determining the admissible load at
a link. This may lead to
connections with low QOS
requirements getting better service
than they require, leading to an
underutilization of the resources.
To alleviate this problem we need
“rush-through” using a burst-level
priority scheme. This scheme
handles related cells in a network
on a burst-by-burst basis.
Bandwidth is allocated to bursts
on-the-fly according to their
priorities.

22. 'Blessing in disguise' 22. Inverse the role of the
harmful process and redirect it
back.

22. Defeating Distributed Denial
of Service (DDoS) attacks. A
DDoS attack saturates a network.
It simply overwhelms the target
server with an immense volume of
traffic that prevents normal users
from accessing the server. In
contrast to other types of DoS
attacks that operate on an
individual basis, these distributed
attacks rely on recruiting a fleet of
“zombie” computers that
unwittingly join forces to flood
the victim server. The critical
harm is because of the attack’s
distributed nature. Attackers can
exploit the Internet’s insecure and
readily accessible channels to
aggregate an enormous traffic
volume that doesn’t infiltrate but
effectively jams the secure
channels. So in applying TRIZ we
can convert harm (overloading of
computers) into a benefit
(decreasing the zombie’s
effectiveness) by creating
bottleneck processes on the
zombie computers, limiting the
attack ability; this could be done
by requiring the attacking
computer to correctly solve a
small puzzle before establishing a
connection. Solving the puzzle
consumes some computational
power, limiting the attacker in the
number of connection requests it
can make at the same time.

23. Feedback 23. Introduce a feedback variable
in a closed loop to improve
subsequent iterations based on
qualifiers.

23. Rate-based feedback in an
Asynchronous Transfer Mode
(ATM) system. Closed-loop input
rate regulation schemes have

Name [14] Description [12, 13] Examples [12, 13]
come to play an important role in
the transport of the Available Bit
Rate (ABR) traffic service
category for ATM. By modeling
the feedback system as a finite
Quasi-Birth-Death (QBD)
process, the performance of a
delayed feedback system with one
congested node and multiple
connections can be achieved.

24. Intermediary 24. Use a mediator to provide a
view(s) of data to a process in the
context of the processes
application space.

24. Using mediators in
conjunction with the eXtensible
Markup Language (XML) to
enhance semi-structured data.
Mediation can be an important
part of XML. In conjunction with
a Document Type Definition
(DTD), a mediator can assist
another process; let’s say a user
interface in query formulation and
query processing more efficiently.

25. Self-service 25. Same as above. 25. Symantec Update; this
application periodically checks for
updates of its applications; if there
are new artifacts that need to be
updated, a dependency graph is
implemented and executed thus
servicing the application.

26. Copying 26. Instead of creating a new
object that takes unnecessary
resources perform a shallow
copy.

26. A shallow copy constructs a
new compound object and then (to
the extent possible) inserts
references into it to the objects
found in the original.

27. Cheap / short living 27. Same as above. 27. Rather than developing a full
application out of a prototype
causing expensive cost overruns,
use Throwaway (or rapid)
prototypes.

28. Another sense 28. Same as above. 28. Voice recognition alleviates
the mechanical action of typing
and mistyping and then
backspacing.

29. Fluidity 29. - 29. -
30. Thin and flexible 30. Isolate the object from the

external environment using
wrapper objects.

30. A wrapper or adapter object
isolates and object from its
external environment by
maintaining a fixed interface
between the inner-object and the
outer object (the wrapper object).

31. Holes 31. - 31. -
32. Colour changes 32. - 32. -
33. Homogeneity 33. Create pure objects of a

certain type ensuring identical
properties.

33. The container data object such
as an array. Each array element
MUST be of the same type

Name [14] Description [12, 13] Examples [12, 13]
 allowing for consistent write and

read operations.
34. Discarding and recovering 34. Discard unused memory of an

application.
34. The garbage collector process
in the Java programming language
periodically “cleans” up memory
by discarding objects that have
lived past their scope.

35. Parameter changes 35. Same as above. 35. A software application can be
transformed to provide a different
service based on properties
changing dynamically. This
flexibility allows for more multi-
role objects in an application.

36. Paradigm shift 36. - 36. -
37. Relative change 37. - 37. -
38. Enrich 38. - 38. -
39. Calm 39. - 39. -
40. Composite structures 40. Change from uniform

software abstractions to
composite ones.

40. Software design patterns are
the core abstractions behind
successful recurring problem
solutions in software design.
Composite design patterns are the
core abstractions behind
successful recurring frameworks.
A composite design pattern is best
described as a set of patterns the
integration of which shows a
synergy that makes the
composition more than just the
sum of its parts.

 Table 5: Interpretations and Examples of the 40 Inventive Principles as applied to Software Systems

APPLYING THE GENERIC MODEL OF
INVENTIVE IDEATION TO SOFTWARE

The previous section has shown how the
parameters and Inventive Principles used in the
TRIZ methodology can be modified to suit
software systems. As illustrated in the Table 5,
in some cases there is no natural analogy in the
software field. We suggest that instead of trying
to force an analogy where there is no true match,
one should rather try and find a more appropriate
model. When considering the descriptions of the
mechanisms in the generic model for inventive
ideation given earlier, there is no need for any
artificial manipulation to make it suit software
problems. It can be used as is. It has the added
advantage that it covers the whole spectrum of
creative thinking techniques and invention
heuristics. It now remains to be shown how this
model can be applied to software systems.
Since the generic model is based on a set of 10
mechanisms that should be applied on the

attributes of the system, one should first establish
what the relevant generic attributes of software
systems are. Once these attributes have been
identified, a set of Ideation Domains are created.
An Ideation Domain consists of a mechanism,
the attributes on which the mechanism can be
applied and the inventive principle(s) or creative
thinking technique(s) that are suggested.
In order to determine the relevant attributes for a
target system, one needs to create a system
model containing the key system descriptors [2].
A software system model is derived as follows:
Typically a software system has external
interfaces towards its environment. At these
interfaces, the software system could receive
input (stimuli), resulting in actions being
performed by the system (this could include
output from the system towards its environment
in various forms, e.g. messages sent out on a
network, information displayed on a screen,
etc.). The system itself could consist of multiple
interacting objects that could in turn perform

actions as a result of certain stimuli. There are
also certain constraints within which the system
and its objects have to operate. Our software

system model therefore has the following key
system descriptors and attributes:

Key system
descriptors

Attributes Notes

Robustness The ability of the system to remain operational even when abnormal
stimuli or abnormal sequences of stimuli are received.

Availability The availability of a system is the percentage of time that the system is
operational. The Mean Time To Repair (MTTR) for a software
system can be computed as the time taken to reboot or to switch over
to a redundant system after a software fault is detected.

Security This includes access control, authentication and encryption aspects.
Scalability This covers the ease with which the system would be able to handle a

larger number of users, more data, etc.
Ease of use /
"Look and feel"

This includes everything related to the user’s interaction with the
system. This could be visual, audio and tactile.

Architectural
complexity

This covers the structure of the system. It includes the interfaces of
the subsystems.

System

Control
complexity

All aspects related to locus of control are covered here. For example,
it includes algorithm design, the way in which concurrent modules
interact, etc.

Environment Type The type of environment, which could include aspects such as the
operating system and the development environment (e.g. compiler).

Order This includes aspects such a synchronous/asynchronous operation.
Duration The stimuli can be periodic, continuous or once-off.

Stimulus

Type Various types of stimuli can be received e.g. messages (data),
interrupts, etc.

Accuracy /
Functionality

This covers ways in which correctness of data is ensured (e.g. when
dealing with concurrent systems), how the system meets functional
requirements, the accuracy of timers, etc.

Duration The action performed could be periodic, continuous or once-off. An
example of how this attribute can be tweaked is by processing only a
subset of the elements of a large list at a time and sending a stimulus
to itself to process the next subset. Instead of processing the complete
list at once and preventing other interactions with the system during
that time, the once-off duration is changed to a number or periodic
durations.

Action

Order This includes the order of any output of the system, as well as the
order of execution of steps (the algorithm itself).

Interface The pre- and post-conditions for each type of interaction offered by
the object are covered here.

Extensibility This covers the ease with which the object can be modified for added
functionality.

Compatibility /
Interoperability

This includes ways to ensure interoperability or backwards
compatibility with other objects.

Object

Symmetry Aspects such as master / slave, client / server models, etc. are covered
here.

Space A software system usually has to operate within certain hardware
constraints regarding permanent storage, memory and /or bandwidth.
It is therefore important to minimise static and dynamic memory
utilisation, the amount of data transmitted / stored, etc.

Constraint

Time A certain reaction time is usually expected of a software system.
Furthermore, efficiency in terms of speed should be maximised.

Table 6: Key System Descriptors and Attributes of Software Systems

In order to construct the 10 Ideation Domains for
software systems, the above attributes have to be
considered for each mechanism in the generic
model and suitable invention heuristics should be
suggested. These invention heuristics are not
necessarily Inventive Principles, but could also
be creative thinking techniques. A separate table
should be created for each Ideation Domain. In

the interest of brevity, Table 7 below shows the
parameters and the different types of
mechanisms with the corresponding invention
heuristics all in one table. Note that the
heuristics in the table below are not exhaustive,
but serve as an example only. They are also
given at a high level only.

Key system
descriptors

Attributes Mechanism Invention heuristic

Robustness Remove Ignore any out of sequence or invalid stimulus.
Availability Add Add redundant modules to improve availability.
Security Distort,

Add
Change parameters outside their normal range (the
concept of a public key).
Add information to secure the system, e.g. passwords.

Scalability Rearrange,
Add

Restructure the system to remove bottlenecks. It may
be required to add modules in order to achieve that.

Ease of use /
"Look and feel"

Add,
Distort
Associate

Add audio or tactile output to visual output, e.g. add
audio indications of what is on the screen for visually
impaired users.
Distort the output, e.g. when the pointing device
moves over an item it is enlarged and not just
highlighted.
Use analogies from other environments to come up
with new user interfaces (see example in Table 8).

Architectural
complexity

Re-arrange Use different criteria to structure the system.

System

Control
complexity

Remove,
Add

Remove the concept of a program counter. Add
conditions under which a statement will execute
infinitely often.

Environment Type Adjust Change the type of the environment, e.g. sequential to
concurrent, or from single-user to multi-user.

Order Adjust Change the communication from synchronous to
asynchronous or vice versa.

Duration Adjust Change a continuous or once-off stimulus to periodic
or vice versa.

Stimulus

Type Adjust Adjust the contents of the stimulus so that it
multiplexes information from multiple sources or vice
versa if it is already multiplexed.

Accuracy /
Functionality

Remove Remove redundant information to ensure data
integrity.

Duration Adjust Instead of performing a task continually or once-off,
perform it periodically.

Action

Order Rearrange Store transactions in reverse order for backing out.
Replace linear data types with circular abstract data
types.
Change the order of the output of the system if that
will allow the user to make an early decision on
whether to abort the remaining output.

Interface Other-Use Use the same interface, but apply a different meaning
(polymorphism).

Object

Extensibility Add,
Adjust

Extend an object by adding methods or overriding
existing methods.

Key system
descriptors

Attributes Mechanism Invention heuristic

Compatibility /
Interoperability

Add,
Remove

Add a wrapper to emulate an existing interface for
backwards compatibility / interoperability purposes.
Ignore (remove) any elements in a received message
that are not known (typically elements are added
inside Protocol Data Units as the protocols evolve) to
ensure that earlier versions will be compatible with
later versions.

Symmetry Adjust Change from a symmetrical to an asymmetrical
architecture (e.g. master/ slave to autonomous objects)

Space Rearrange Restructure data in order to minimise memory usage
or reduce the amount of data transmitted over the
network (messages going to the same destination can
be multiplexed, saving on overhead).

Constraint

Time Segment Change the atomicity of execution in order to improve
reaction time.

Table 7: Sample of Software Ideation Domains

For some mechanisms there might be Inventive
Principles for many of the individual attributes,
as demonstrated in Table 7.
For other mechanisms, such as the Associate
mechanism, there is a basic technique that
applies to all attributes. For this mechanism, the
software designer always needs to find an
analogy between the attribute and a similar
attribute in other environments.
Word associations could be used to find
analogies. For example, words such as 'stop',
'go' could lead to analogies like traffic lights and
railroad signals. Table 8 shows examples of
important software innovations of the past where
the Association mechanism was evident.

Key system
descriptors

Attributes Examples of innovations resulting from the application of the
Associate mechanism

Ease of use /
"Look and feel"

• When Doug Engelbart read about the development of the
computer, his exposure to radar screens during his time as a
radar technician triggered the idea of having people sitting in
front of cathode-ray-tube displays, "flying around" in an
information space [17].

• Dan Bricklin was sitting in an MBA lecture and daydreamed
about having a device where he could have a virtual image in
front of him like in a fighter plane. He thought how
convenient it would be if he could use a mouse to move
around on the image to enter a few numbers, circle the
relevant ones on which he wanted to do some calculations
and then get the results. (He had seen a demonstration of a
mouse some time before that.) This is how the idea of a
spreadsheet was born [18]

Architectural
complexity

• Design patterns for software, published by Gamma, Helm,
Johnson and Vlissides, are analogous to design patterns in
architecture [19].

System

Control
complexity

• LISP was born when McCarthy realized that a program could
itself be represented as a list [8].

• E. W. Dijkstra defined semaphores for coordinating multiple
processes. The term derives from railroad signals, which in a
similar way coordinate trains on railroad tracks [8].

Environment Type • The first Fortran implementation was completed in 1957.
There were a few compilers before this point, but Fortran
used notation far more similar to human notation [8].

Action Accuracy /
Functionality

• Ken Thompson embedded regular expressions (a concept
which had been studied in mathematics) in the text editor ed
to implement a simple way to define text search patterns [8].

Object Compatibility /
Interoperability

• The idea of standards for software occurred to people when
they realised that compatibility / interoperability problems in
other disciplines were solved by defining standards. One of
the first standards to be defined was the ASCII code to
represent characters as numbers [8].

Table 8: Examples of Software Innovations where the Associate Mechanism was evident

CONCLUSIONS AND FUTURE RESEARCH
This paper has explored possible ways in which
creative thinking techniques and invention
heuristics could be applied to software systems.
Much of the current research in this area is being
devoted to the adaptation of the TRIZ
methodology to software systems. As was
shown earlier, some of the Inventive Principles
that have been defined for software systems
seem rather forced. A more generic approach
might therefore be more appropriate.
A second shortcoming of the TRIZ for software
methodology is that it does not take advantage of
the more radical creative thinking techniques
such as random stimulation and lateral thinking.

The generic model for inventive ideation was
found to be a very promising vehicle for
facilitating a structured approach towards
problem-solving without losing the benefits of
creative thinking techniques such as random
stimulation.
A small sample of software Ideation Domains
was presented in the previous section to
demonstrate how the mechanisms of the generic
model can be applied to the attributes of software
systems and result in useful invention heuristics.
No artificial manipulation of the invention
heuristics was necessary to make it suit software
systems. This followed naturally because the
basic model itself is generic.

Note that the work presented here represented
only a small sample of the full spectrum of
software Ideation Domains. More research is
necessary to populate these domains completely.
This will require an analysis of well-known and
important software innovations and patents.
Applying the generic model for inventive
ideation to software systems also addressed the
second shortcoming of the TRIZ for software
methodology. When examples of important
software innovations from the past few decades
were analysed, it was interesting that the
associate mechanism was repeatedly identified as
the mechanism that triggered the innovation.
This confirmed the notion that the more novel
ideas tend to be generated by the application of
mechanisms that are outside the scope of the
TRIZ methodology.
Another area that requires further research is the
success rate of generating innovative ideas using
this model. It is concluded in [2] that the
application of the generic model of inventive
ideation to physico-mechanical systems does
indeed yield positive results. In [16] it is
claimed that the use of the TRIZ methodology in
a software case study also successfully produced
innovative ideas. It would be very interesting to
see whether empirical data on this topic would
confirm these findings for the generic model
when applied to software systems.

REFERENCES
1. Boden, M.A. The creative mind: Myths and
 mechanisms. Abacus Books, London, 1992.
2. Ross, V.E. A model for inventive ideation.
 Ph. D thesis, University of Pretoria, 2006.
3. De Bono, E. The use of lateral thinking.
 Jonathan Cape, London, 1967.
4. De Bono, E. Parallel thinking: from Socratic
 to De Bono thinking. Viking, London, 1994.
5. De Bono, E. Serious Creativity. Harper-
 Collins, New York, 1993.
6. Altshuller, G. S. To find an idea:
 Introduction to the theory of solving
 Problems of inventions. Nauka, Novosibirsk,
 USSR, 1986.
7. Savransky, S.D. Engineering of creativity:
 Introduction to TRIZ methodology of

 inventive problem solving. CRC Press LLC,
 Florida, 2000.
8. Wheeler, D.A. The most important software
 inventions. Available at
 http://www.dwheeler.com/innovation/,
 April 2008.
9. Tiller, R. Red Hat asks Federal Court to
 limit patents on software. Available at
 http://www.press.redhat.com/
 2008/04/07/red-hat-asks-federal-court-to-
 limit-patents-on-software/.
10. Webber, D.B. Software patents, in
 Proceedings of Software Engineering
 Conference (Sydney, Australia,
 29 September – 2 October1997).
11. Foundation for a Free Information
 Infrastructure (FFII). European software
 patent horror gallery. Available at
 http://www.swpat.ffii.org/patents/samples/
12. Rea, K.C. TRIZ and software – 40 principle
 analogies, Part 1. Available at
 http://www.triz-journal.com/archives/,
 September 2001.
13. Rea, K.C. TRIZ and software – 40 principle
 analogies, Part 2. Available at
 http://www.triz-journal.com/archives/,
 November 2001.
14. Mann, D. TRIZ for software. Available at
 http://www.triz-journal.com/archives/,
 October 2004.
15. Mishra, U. The revised 40 principles for
 software inventions. Available at
 http://www.trizsite.com, July 2006.
16. Bhushan, N. Case study – Use of TRIZ in
 software design. Available at
 http://www.triz-journal.com/archives/,
 June 2008.
17. Engelbart, C. Alifetime pursuit. Available at
 http://www.bootstrap.org/chronicle/.
18. Bricklin, D. The idea. Available at
 http://www.bricklin.com/history/.
19. Gamma, E., Helm, R., Johnson, R. and
 Vlissides, J. Design patterns: Elements of re-
 usable object-oriented software. Addison-
 Wesley Publishing Company, 1995.

	DELIBERATE CREATIVITY
	Creative Thinking Techniques
	Invention Heuristics
	A Generic Model for Inventive Ideation

	SOFTWARE AND INVENTIVE IDEATION
	Software Inventions
	Software and Invention Heuristics

	APPLYING THE GENERIC MODEL OF INVENTIVE IDEATION TO SOFTWARE

