11 June 2008

Submission to Kourie Festscrift

The Lazy Programmer

Judith Bishop

Computer Science Department
University of Pretoria
Pretoria 0002, South Africa

jbishop@cs.up.ac.za

ABSTRACT

The concept of laziness is defined according to the practice,
advocated by Dijkstra, of writing a program correctly from the
beginning, so as to rule out costly testing and re-writing. I trace
the meaning of laziness in the life of my friend Derrick Kourie,
and contrast it with some of my pet ideals, such as languages,
tools and design patterns. The limits of being a Lazy
Programmer in today’s object-oriented and concurrent world are
explored. How one adapts the principles of laziness in teaching
is revealed from recent work of Derrick’s. History plays a part in
all we do, and references that reflect our path as computer
science academics in South Africa are included.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features — Classes and objects, Inheritance, Patterns

General Terms

Algorithms, Design, Reliability, Human Factors, Languages,
Concurrency

1. INTRODUCTION
1.1 The anecdote

I am writing this paper for my dear friend and colleague, Derrick
Kourie. I have known Derrick since 1970, when we both
attended NCFS conferences together, planning protests against
forced removals, the loss of academic freedom, the banning and
imprisonment of priests and student leaders, and the attacks on
schools and missions. NCFS stands for National Catholic
Federation of Students and had representatives from all the
universities. I was from Rhodes, Derrick was from UP, and we
met on common ground at Marianhill in Natal when Steve Biko
tried to force a walk out of black students from multi-racial
organizations into SASO [13]. In 1970, he did not succeed,
thanks to the power of prayer and diplomacy of our mighty
leader and friend, Jan d’Oliveira. Or maybe our members just
loved my bagpipes. Derrick often says he remembers me
marching around playing away “while Rome burned” as it were.

1.2 The man

Derrick is the perfect good friend. He is articulate, smart, warm
of heart and always ready for a chat or a skinner. It is seldom
that there is not someone in his office seeking advice or sharing
a joke. And his jokes are heard in high places, with the Vice
Chancellor on his email list!

Derrick loves good food and casts scorn on people who skimp
on the good things of life. These include very simple pleasures,
like a once a day cigarette from the Campus Kiosk — an excuse

to walk across our lovely gardens and get away from the
colleagues beating a trail to his door maybe?

Figure 1 Derrick, Kourie at Moyo, January 2006

I perceive Derrick as deeply religious in the very best sense. His
faith in God and the future is unshakable, his love for people
shines through everything, and he never loses hope in hopeless
cases. Many a student has been steered to a pass for an MSc
though his meticulous editing, and many a paper has squeaked
in because of his fine wordsmithing. Derrick’s family mean
everything to him, and he is a proud and devoted parent. I
remember when I had to return from the UK lock, stock and
barrel in 1991, under stressful circumstances which placed
severe strains on my faith, he told me: “Don’t worry — God has a
place for everyone in heaven — with parents in the front row.”

1.3 The background

In 1972, the programming scene was dominated by languages
such as Fortran, Algol, Cobol and PL/I. IBM (Big Blue), with its
strangle-hold on software bundled with hardware, was the
enemy of academics — a mantel that it has since been relieved to
pass on to Microsoft. The Garmisch Software Engineering
Conference had taken place four years ago, and people were
well aware that there was a software crisis looming.

Figure 2 Edsger Dijkstra

Enter one of the greatest computer scientists who ever lived,
Edsger W Dijkstra (1930-2002). Dijkstra was in his prime,
working, at Burroughs Corporation in the US, when he received
the ACM Turing Award 1972. His address given in response to
the award was entitled “The Humble Programmer” and it
became a classic for computer scientists, gaining more than 2

11 June 2008

000 citations to date [7]. Dijkstra’s simple but revolutionary idea
was that the key to producing reliable software is to avoid
introducing bugs, rather than eliminate them later. In concluding
his speech, he made the now famous quote:

“We shall do a much better programming job provided that
we approach the task with a full appreciation of its
tremendous difficulty; provided that we stick to modest and
elegant programming languages, provided that we respect
the intrinsic limitations of the human mind and approach the
task as Very Humble Programmers”[7].

Dijkstra did not only pontificate — though he was very good at
that. He also produced the earliest multi-programming operating
system (the THE) [10], and was well known for his classic
papers on cooperating sequential processes [8], and his
memorable indictment of the go-to statement back in 1968 [9]. It
is interesting to note that Derrick’s research group Espresso has
close ties with Dijkstra’s old group at TU Eindhoven through
Bruce Watson.

Dijkstra also had a keen interest in teaching and in 1989
published an article sarcastically called “On the Cruelty of
Really Teaching Computer Science” [6] in which he challenged
teachers to follow a formal mathematical approach to
programming, ending once again with a rallying cry:

“Teaching to unsuspecting youngsters the effective use of
formal methods is one of the joys of life because it is so
extremely rewarding. Within a few months, they find their
way in a new world with a justified degree of confidence that
is radically novel for them; within a few months, their
concept of intellectual culture has acquired a radically
novel dimension.”’[6]

Computer programming:
Is it computer science?

Figure 3 Cover of the SAJS Issue, January 1991

In that same year, 1989, I gave my inaugural lecture as a
professor at the University of the Witwatersrand, coincidentally
addressing a similar topic. My talk was ambiguously entitled:
“Computer Programming: Is It Computer Science?” My
conclusion was that there is a

“vast contribution that computer scientists have made, and
are still making, to the goal of making programs more
readable, writable and reliable. There is a crying need for
these advances to be more widely known and accepted, and
for computer scientists to take their rightful places as the
experts in the programming arena, to be called in, as Wirth
says, when the going gets tough.”.[17]

Submission to Kourie Festscrift

And what was Derrick’s response to all this? It was twofold. He
started teaching the Dijkstrasian approach to program
construction to Honours students in , which he has
successfully presented ever since. It is now called FAC751
(Formal Aspects of Computing) and attracts 10-15 students a
year. But taking a broader view of teaching, he presented a
keynote address at SACLA, entitled, not entirely tongue in
cheek, “On the Benefits of Bad Teaching” [19].

In this address, he itemized the characteristics of good teaching:
the selection of appropriate course material, good organization,
good delivery, good reinforcement procedures and good
assessment procedures, but then went on to argue that if one is
lazy and does not reach perfection, or even high standards, in
these areas, students will not be irreparably harmed.

Good teaching is inherently time-cost inefficient, and by
underplaying, neglecting or ignoring it we might actually be
advancing our students’ academic maturity! This observation is
so much like that of Dijkstra’s that I shall add one more
quotation from the master:

“I was recently exposed to a demonstration of what was
pretended to be educational software for an introductory
programming course. With its "visualizations" on the screen
it was such an obvious case of curriculum infantilization
that its author should be cited for contempt of the student
body”. [6]

1.4 The topic

Derrick claims he is lazy and that he likes the good life too
much to be diligent. His impressive list of publications, books
and successful postgraduates belies this notion. But he has
espoused laziness in the Dijkstrasian sense: if a program can be
written correctly the first time, surely we can save a lot of
trouble in debugging, and all go home early? His work on
program construction, and the notes for FAC751 are testimony
to this ideal.

Predictably, Derrick and I don’t always see eye to eye on
programming (especially when it comes to programming
standards!) and so it is in recognition of my deep respect and
affection for a great man who is dear to all of us, that I willingly
take up my pen to write an article that sees the world through his
eyes — or rather, through bifocals. That is, I intend weaving
Derrick’s ideas with my own, exploring the ideal of laziness and
seeing how indeed we can put it to work for our advantage. In so
doing, I shall attempt to summarize some of Derrick’s ideas on
Software by Construction, and intersperse them with my own
views from the world of programming languages and distributed
systems. Then I shall take a few steps back and examine the
limits of laziness: how lazy can we be, before it gets out of
control? And that’s enough for a Lazy paper!

2. APPROACHES TO LAZINESS

2.1 Software by construction

The basis of lazy programming is to confine oneself to
intellectually manageable programs [7]. This is not as severe a
restriction as one might imagine, provided we apply our
intellects in the first instance, rather than head directly for the
keyboard. Moreover, every large program consists of many
small ones (as component developers will assure us). Then, we
proceed to construct the program according to mathematical

11 June 2008

rules, so that at the end, we know it is correct and no bugs are
possible. Going home time!

In [18], Kourie summarizes the process as follows.

O Characterize what we expect a piece of code to achieve (the
code’s postcondition).

O Characterize the starting off scenario (i.e. the precondition)
that should be in place in order for a particular piece of
code to attain the required postcondition.

O Specify pre- and postconditions in an appropriate notation
such as Dijkstra’s GCL.

O Evolve, in a series of refinement steps, code that solves the
problem— i.e. code whose execution is guaranteed to end
up in a state consistent with the postcondition, provided
that it is starts off in a state that adheres to the pre-
condition.

O Refine incrementally the specifications for various
problems according to established refinement laws such as
Hoare triples or Morgan’s laws.

This process differs significantly from ordinary programming in
that the notation is firmly mathematical, and that the derivation
of the code proceeds according to the application of laws, rather
than by the programmer’s intuition and inventiveness.
Nevertheless ingenuity and manipulative prowess are still
required in large measure. It is just that the anticipated payoffs
are much higher using this method, i.e. a bug free result. Figure
4 shows an extract from Kourie’s notes, where he goes through
the logical steps required to set up the postcondition for a loop.

2.2.4 Refining to create a loop
T'he part of the specification which is destined to become a loop is as follows:
t,7:|inv,inv A j = Alen

on. In the

law

iv in the right form to apply ti inement law for r

hat law, j = A.len is the 1

ion of the guard. !

on of the variant}

0< Alen ~j < Allen

{subtract A.len all around}

Figure 4 Example of software by construction

2.2 The place of design patterns

In a mathematical system based on laws, one builds up an
arsenal of established algorithms that can be slotted in later. In
my parallel world of object-oriented programming, these would
be equivalent to the methods, classes or APIs that are typically
built in the course of large system construction. The hope is that

Submission to Kourie Festscrift

through testing small parts and coming to some assurance that
they work, their deployment in larger units will be successful.

A different aspect of modern programming is design patterns,
which encapsulate common circumstances and show how they
should be developed. For example, an observer pattern identifies
subject and observer roles, and defines the interaction between
them ([15] and Figure 5).

Figure 9-9. Observer pattern UML diagram

Subject <<interface>>
Notify calls > pree, : 10bserver
Update — § 1 F——
sk Notify() +Update() .
+Attach() A
+Detach()]
Observer 1
subject I
state
+Update()

© Judith Bishop, C# 3.0 Design Patterns, O’ Reilly, 2008
Figure 5 The Observer Design Pattern

I find myself thinking about how design patterns fit in with
software by construction, and the closest seems to be the
refinement rules. Design patterns have names, which establish
their place in discourse, and they are always represented in the
same way. That is the essence of a pattern. They do not have to
be implemented in the same way, though, as different languages
will always provide different levels of abstraction to work from
[16].

2.3 Advances in languages

In comparing my situation to that of Derrick’s, I find that the
major difference between us concerns types. Software by
construction concentrates on the algorithmic niceties and
complexities of looping around arrays. My programming hurdle
is always to set up the classes, collections and permissions so
that an accurate view of a complex world can be depicted in a
program, with maximum abstraction and security.

In my world, laziness with respect to languages can be espoused
in two ways. As a language enthusiast, I tend to embrace new
features and quickly find how they can be turned to my
advantage, so I can be more lazy and let the compiler find silly
bugs. For example, automatic properties in C# 3.0 relieve the
programmer of much tedious and error-prone get-and-set
coding, as in

string Name {get;}

which sets up read-only access to a private local string field. I
have found that for very complicated type related programs,
where inheritance, generics, polymorphism and overloading are
all intertwined, it is essential to have the compiler there,
checking the rules. Time and time again, once the compiler lets
the program through, I have had the heady experience of the
program running clear first time. This is surely one of the goals
of Software by Construction, only I am being ultra-lazy by
getting a compiler to help me.

Another opportunity for laziness is to follow the herd. I have
noticed that over the 50 years of language development, defaults
for features have become more and more sensible. Values are
now initialized by the system to zero or null; switch statements
take you where you would like to go after a branch is executed;
operator precedence has been sorted out so that the number of

11 June 2008

parentheses has halved. What amazes me is that there are
programmers and teachers who still use the old ways, e.g.

int i=0; // initialization redundant

if ((i<n) && (a[i]!=x))

// inner parentheses unnecessary

The first example is the result of JVM technology, the second in
advances in compiler construction. This lazy programmer says
thanks to both communities for their efforts, and she would
certainly write:

int i;

if ((i<n && a[i]!=x)
2.4 Verification and tool support
Over the years I have experienced a confusion that has probably
been shared by many other programmers who do not come into
day-to-day contact with formal methods. I heard about program
verification, and assumed that this would be a brilliant idea.
Write a program, submit it to a verifier, and get a yay or
naycomes out the back. Naturally that was not the idea at all.
Verifiers do exist, but in order for them to do their work, they
need a specification, and the specification is exactly the maths
that software by construction builds up. Dijkstra makes the point
that one should not first make the program and then prove its
correctness [7], since that would only increase the poor
programmer’s burden. However, there is nothing wrong with
having a helping hand with the proof that goes hand in hand
with the construction.

In 2005, I was involved by association in one of the most
famous verifiers, ACL2, when I was chair of the ACM Software
System Award Panel that recognized the work of Boyer, Moore
and Kaufmann.

“ACL2 is a very large, multipurpose system. You can use it
as a programming language, a specification language, a
modeling language, a formal mathematical logic, or a semi-
automatic theorem prover, just to name its most common

uses.”’[12]

I have not delved into ACL2 but it would seem to me that lazy
programmers would regard it as a boon. There is a library of
proofs, and in the modern community style, one can go in and
add more. I do, however, have some experience with Spec#,
Microsoft’s contribution towards a more cost effective way to
develop and maintain high-quality software, and have been
teaching it in COS333 Programming Languages for five years
now.

The Spec# system consists of an extended language with non-
null types, checked exceptions, method contracts in the form of
pre- and postconditions as well as object invariants; a compiler
that statically enforces all this and records contracts as metadata
for consumption by downstream tools; and the Spec# static
program verifier. This component (codenamed Boogie)
generates logical verification conditions from a Spec# program.
Internally, it uses an automatic theorem prover that analyzes the
verification conditions to prove the correctness of the program
or find errors in it.

What makes Spec# exciting for me is that it lives in the real
world: it even guarantees maintaining invariants in object-
oriented programs in the presence of callbacks, threads, and
inter-object relationships. Some of the best minds in the
discipline were called in to develop the science behind this (see
for example [20]). An example of a Spec# program is given in
Figure 6.

Submission to Kourie Festscrift

public void sortArray(int[]! a)

modifies a[*];

ensures forall{int j in (0: a.Length), int i
in (0: Jj); a[i] <= a[]l};
{

for (int k = 0; k < a.Length; k++)
invariant 0 <= k && k <= a.Length;
invariant forall{int j in (0: k), int i in (O:
j){; afi] <= a[jl};

// Inner loop — see next slide
}
}

Figure 6 Program specification in Spec#

Although the notation is not as concise or mathematically
elegant as GLC, it has a familiar feel for some programmers.
Since Spec# has all the power of GLC and more, as a Lazy
Programmer, I would not go into the world of specification
without a tool like this.

2.5 Lazy evaluation

Last on my list is lazy evaluation, which used to be something
that functional programmers whispered about in the past, but
which is now coming into the mainstream as databases are being
connected up over the internet, and programs can interrogate
unknown sizes of data. I now use it regularly in small and large
programs through the new yield-based iterator in C# 3.0 which
is connected to the select syntax. select is a statement in
C# 3.0 which mirrors the SQL version and can connect to data
sources in memory or on databases or over the internet. The
program stays the same. For example, the following request:

var selection = from p in family
where p.Birth > 1980
orderby p.Name
select p;

}

links up with a user-defined yield-based iterator for a tree as in
Figure 7.

//C# 3.0
public IEnumerable <T> Preorder {
get {return ScanPreorder (root);}

}

// Enumerator with T as Person
private IEnumerable <T>
ScanPreorder (Node <T> root) {
yield return root.Data;
if (root.Left !=null)
foreach (T p in ScanPreorder (root.Left))
yield return p;
if (root.Right !=null)
foreach (T p in ScanPreorder(root.Right))
yield return p;
}
}

Figure 7 Yield-based iterator for a tree

The remarkable bit is that all the above code does absolutely
nothing! It is really lazy, until along comes the loop statement:

11 June 2008

foreach (Person p in selection)
Console.Write(p+" "y

Then the values for selection, as defined by the select statement
with its filters are generated one by one and returned via the
yield statement.

It is interesting to note that Java is not as lazy as C# 3.0 since it
does not have a yield statement. It does have a foreach, but two
foreaches cannot interact in the way above (like coroutines).
therefore Java is restricted to working with simple linear or
predefined collection types.

3. THE LIMITS OF LAZINESS

3.1 Not all problems are small

It might be naive to claim that programming in this way is the
silver bullet that will solve the software crisis, but it is certainly
one way. Others have proposed and supported the methodology,
notably Gries, in his seminal book “The Science of
Programming” [4] and Hoare [2], who referred to it as the
axiomatic method. However, by the 1980s, interest had picked
up in data abstraction, and was moving away from “straight line
programs” as they were termed by Liskov and Guttag [1]. It is
therefore not so much a question of size, but of the nature of the
program. These days too much of what we do is oriented away
from number crunching, bin packing and sorting, and towards
data access and manipulation, with semantics, networking, user
interfaces and security being highly important aspects of the
whole system.

No matter what the form, most people acknowledge that more
formalism is necessary in critical situations. Niklaus Wirth also
makes the point that our software is just too big, and that we
could have leaner programs in the first place [21]. He would
certainly get a badge for Laziness in this respect, although he
still must be the one person who has invented more mainstream
languages, as well as computers, ever. Question: guess how
many. (Answers in the talk.)

3.2 It’s an age thing

The acceptance of a lazy approach to programming requires
either that you are caught very young, or that you have a certain
maturity of outlook. As Derrick will know, the Jesuits had the
view that they had to grab the hearts and minds of children by
the time they were 7! Rogers and Hammerstein had a similar
notion in South Pacific:

You've got to be taught before it's too late,
before you are six or seven or eight,

to hate all the people your relatives hate —
you've got be carefully taught!"

On the other hand, age can also make us more set in our ways,
less open to trying new things. Our laziness becomes a trap, and
might even prevent us from adopting new ways which could
enable us to be more productive with less effort — i.e. ever more
lazy.

3.3 The advance of the multi-cores

Sometimes technical advances push us out of a nice lazy path.
The current advance of the multi-core processors is one such.
How are we to program them, and how will our current methods
adapt in the face of multiple processors? We have been through

Submission to Kourie Festscrift

this trauma before in the 1980s notably with transputers. Both
Derrick and I spoke at the first conference on Parallel Processing
in South Africa in 1989 [22]. It would be interesting to track the
development of Derrick’s think away from object orientation
towards algorithms over the past 15 years — catch him at tea.

It was Hoare who was the most famous for CSP, the basis of
much of the concurrent programming we do today [3]. Derrick
teaches an updated version of CSP (using a tool!) to second
years in the COS226 Concurrency course which has been
running for more than 10 years now, every since Jeff Kramer
visited me in 1996. The notation in the Jeff and Jeff book [14]
also now has assertions, as shown in Figure 8.

const N = 2

range Int = 0..N
SEMAPHORE (I=0) = SEMA[I],
SEMA[vV:Int] = (up->SEMA[V+]]
|when(v>0) down->SEMA[v-1]
)o
LOOP = (mutex.down->enter->exit->mutex.up->LOOF).

| | SEMADEMO = (p[l..N]:LOOP
[T {pIl..N]}::mutex:SEMAPHORE(2)).

fluent CRITICAL[i:l..N] <p[i).enter, p[i].exit>
assert MUTEX = []!(CRITICAL[l] && CRITICAL[2])

assert MUTEX N = []!(exists [i:l..N-1] (CRITICAL[i] && CRITICAL[i+l..N]))

Figure 8 FSP Specification with assertions

The tools that accompany this notation do enable visualization
(sorry, Dijkstra) and also allow for testing for properties such as
liveness and progress, which are essential in the concurrent
world.

p. 1:LOOP Pplllmuotexdown p[l]enter pl1].exit

@o o ®»

pl1].mutex.up

Figure 9 LTSA Animation

Derrick is also a fan of David Harel, whose work on Statecharts
earned him the 2007 ACM Software System Award [5].

Where we are going now, it is hard to say. New languages and
methodologies are popping up, such as Erlang and Skala,
leaving us not much time to laze about. Certainly, the objective
seems to be to keep all the computers as busy as can be. If that
means we can write a program once and have it run on lots of
workers, we will have achieved a lot.

4. CONCLUSION

One of the joys of being an academic is having academic
freedom, loosely defined as the right to think and write
according to one’s own interests and convictions. Despite the
pressures of historical precedent or current fashion, an academic
can work on a single problem for decades, or define new
directions every week. Derrick is your true academic. He lets
his mind wander, he keeps up with what is new, but he also
makes the old his own. He has published papers in spectacularly
prestigious journals, and his research group is the envy of us all.
His work on and promotion of Software by Construction goes

11 June 2008

hand in hand with all the other research and teaching he does.
That would not have been possible if he had not indeed, from a
very early age, decided to espouse the ideals discussed above
and become a Very Lazy Programmer.

REFERENCES

[1] Barabar Liskov and John Guttag, Abstraction and
specification in program development, MIT Press, 1986.

[2] C.A.R.Hoare: An Axiomatic Basis for Computer
Programming. Commun. ACM 12(10): 576-580 (1969)

[3] C.A.R.Hoare: Communicating Sequential Processes.
Commun. ACM 21(8): 666-677 (1978)

[4] David Gries, the Science of Programming, Springer-Verlag
1981

[5] David Harel: Statecharts in the making: a personal account.
HOPL 2007: 1-43

[6] Edsger W. Dijkstra, E W, On the Cruelty of Really
Teaching Computing Science, Comm. ACM
32(12):1398:1410, 1989

[71 Edsger W. Dijkstra, E W, The Humble Programmer, (1972
ACM Turing Award Lecture). Comm. ACM 15(10): 859-
866,1972

[8] Edsger W. Dijkstra: Guarded commands, non-
determinancy and a calculus for the derivation of programs.
Proc. Language Hierarchies and Interfaces , 111-124, 1975

[91 Edsger W. Dijkstra: Letters to the editor: go to statement
considered harmful. Commun. ACM 11(3): 147-148, 1968

[10] Edsger W. Dijkstra: The Structure of "THE"-
Multiprogramming System. Commun. ACM 11(5): 341-
346, 1968

Submission to Kourie Festscrift

[11] http://research.microsoft.com/SpecSharp/

[12] http://www.cs.utexas.edu/~moore/acl2/acl2-doc.html

[13] http://www.sahistory.org.za/pages/governence-
projects/organisations/SASQO/saso-history.htm

[14] Jeff Magee and Jeff Kramer, Concurrency: State Models &
Java Programs, Wiley, 2nd ed, 2006

[15] Judith Bishop, C# 3.0 Design Patterns, O’Reilly, 2008

[16] Judith Bishop, Language features meet design patterns:
raising the abstraction bar , Workshop on the Role of
Abstraction in Software Engineering, at ICSE 2008,
Leipzig, May, 2008

[17] Judy M Bishop, Computer programming: is it Computer
Science?, SA Journal of Science, 87(Jan-Feb): 22-33, 1991
[18] Kourie D G, FAC751: Formal Aspects of Computing:

Software-by-Construction, Notes, Department of Computer
Science, University of Pretoria, February 2008

[19] Kourie D G, On the Benefits of Bad Teaching, SACLA
2001 Procedings, ppiv-viii, (Keynote address) June 2001.

[20] Mike Barnett, Rob DeLine, Manuel Fahndrich, K. Rustan
M. Leino, and Wolfram Schulte. Verification of object-
oriented programs with invariants. JOT 3(6), 2004.

[21] Niklaus Wirth: A Plea for Lean Software. IEEE Computer
28(2): 64-68 (1995)

[22] RJ van der Heever and DG Kourie, Design of distributed
systems: object-oriented event-driven approach, Parallel
processing: technology and applications, IOS Amsterdam,
113-123, 1989

