
Web-based development: Putting practice into theory

Iwan Vosloo
Reahl Software Services (Pty) Ltd

PO Box 14240

Hatfield

0028

iwan@reahl.org

ABSTRACT

Against the backdrop of the current web development arena,
this paper sketches an overview of work done by the author
towards achieving a higher-level abstraction to program web
applications to. The paper illuminates unexpected prob-
lems encountered when applying these theoretical ideas in
practice and points out a number of directions for future re-
search. In conclusion, the paper takes a brief look at how
Reahl currently compares to other web frameworks and Con-
tent management systems (CMSs).

1 INTRODUCTION

Web-based development (still) takes a lot of effort—too
much: During the development of web applications, a lot
of programmer time goes into dealing with low-level techni-
cal details. These details are not directly related to the the
task at hand, and they have to be dealt with repeatedly.

This observation warrants a hypothesis: isn’t it possible
to create a higher-level “virtual machine” which exposes ab-
stractions on a level that frees the programmer from these
tedious low-level distractions? What would the abstractions
of such a machine look like, and how will they be imple-
mented?

With such a machine programmers would be more pro-
ductive and would need to know less about various low-level
topics.

Currently a web developer needs to know quite a bit

Dedicated to my Guru, Derrick G Kourie.

about these issues, but very few developers actually do have
this knowledge—resulting in web applications that are rid-
dled with security flaws, are incompatible across different
browsers, and are generally lacking in quality.

The pursuit of a high-level machine or language for build-
ing web applications seems quite profitable.

This paper gives a light overview of the author’s persuit
to date and attempts to point out a number of possible di-
rections for future research in this area.

2 BACKGROUND

2.1 How web applications are built

There are two predominant ways of building web applica-
tions today: use a web framework or use a CMS.

CMSs originated as almost pre-built websites to which au-
thors can add pages with textual and image content without
having to know anything about web development.

CMSs also come with pre-built “modules” of functionality
that users can incorporate into these sites. Examples of such
modules are discussion forums, FAQs, modules for online
polls, online shops, etc.

A web framework, on the other hand, is meant for a more
technical audience. Web frameworks grew, like other pro-
gramming frameworks, from programmers who simply put
the code for doing repetitive tasks in libraries so that such
code could be re-used.

Having started on such a path, a programmer inevitably
needs to make plans to solve certain common problems that
are encountered by many web developers1.

A modern web framework is really a collection of such
plans made to solve some common problems, together with
reusable code libraries and even binaries for certain tasks.

CMSs are usually themselves built using a web framework.
A CMS comes with a lot of pre-built functionality and it

allows a non-technical user to be quite productive. But, it
is somewhat restrictive when it comes to customising such
functionality or look and feel.

Web frameworks, in contrast, provide the flexibility ex-
pected by a programmer, at the cost of having to be a pro-

1It is out of the scope of this paper to enumerate and
explain all of these, but the interested reader is encouraged
to read [18] for a comprehensive list.



grammer. Web frameworks also are not bundled with any
pre-built end-user modules as is the case with CMSs.

Web frameworks and CMSs really are different approaches
towards solving the same problem. Web frameworks evolve
from the insight and lessons learnt from the low level envi-
ronment of the web—from what is possible and what plans
can be made to make it possible. CMSs evolve from user
requirements—what people generally want to be able to
build and with what ease.

2.2 Previous work

The present investigation was motivated by the aim of build-
ing a web framework on a high enough level of abstraction
to make web development less cumbersome and expensive.

In [19], the typical requirements of a web framework were
enumerated. Two of the important requirements were then
used as basis for an investigation into a number of open
source web frameworks. The approaches taken towards these
problems by the different web frameworks were then cate-
gorised. The results were presented in the form of two tax-
onomies.

A visual specification language was proposed in [18] as an
attempt to provide a basic foundation for a higher-level web
framework. The same work also includes detailed explana-
tions of how this language could be implemented. The aim
of the language was to:

• visualise the dynamic structure of the user interface

• see how far one can go while sticking to web standards
and best practices

This language was called Harel, after the inventor of
statecharts—the formalism upon which the language was
based [8].

The bulk of this paper is dedicated to lessons learnt from
implementing Harel, and using it in real world scenarios.

To acommodate the reader who is not familiar with Harel,
the next section diverts briefly in order to introduce the ideas
around which Harel was designed.

2.3 Harel

Page flow is a colloquial term used by web framework de-
signers to describe the relationship between the pages of a
web site. Page flow is a description of the possible ways in
which a user can traverse the different logical locations (web
pages) in a web based User interface (UI). It is to locations
(or pages) in a web UI what control flow is to statements in
a programming language.

Page flow is closely related to the navigational model, as
used in Model driven architecture (MDA) approaches to de-
veloping web applications and hypertext systems [20].

The source code of a web application built with a current
web framework does not readily reflect the page flow of an
application. A programmer has to visualise this aspect of
the design by mentally mapping the design to the scattered
information from various files, templates and programming
code.

A screenshot of a popular tool, Eclipse, is shown in Figure
1 to illustrate the view a Java server faces (JSF) programmer

Figure 1: The view a JSF programmer has on source code
of a web application

Figure 2: The design of the page flow of the simple JSF
application

would have on the source code of a simple web application
built using this technology.

However, when the UI of such a web application is built,
designs are often done by sketching the page flow diagramat-
ically, as shown in Figure 2.

Harel is an attempt to specify a web application as a whole
by structuring its code around a visual design of its page
flow. It is based on statecharts [8], in their incarnation as
State Diagrams in UML [1].

The basic idea is thus that a programmer should be able
to design an application by first designing its page flow, very
much as is done in Figure 2. This basic structure can then be
annotated to also specify dynamic behaviour. Concepts from
the State diagram formalism lend themselves excellently to-
wards specifying this dynamic behaviour.

After having drawn a basic page-flow design, a program-
mer would then be able to zoom into a particular page in
order to specify what that particular page looks like, and



what UI elements it contains.

A web page in Harel is called a “location” and is analogous
to a state in state diagrams.

The adoption of statechart concepts also means that the
language allows for the creation of re-usable chunks of web-
site. Such reusable chunks are somewhat anologous to pro-
cedure calls in a structured language. For example, a user
could choose to “add a bank account” from several locations
in a web site. This would take the user through a series of
screens and return the user to where the choice was made
originally to “add a bank account”.

Among web frameworks, Harel is unique in terms of: its
visual nature; the way in which it allows dynamic behaviour
(controller concerns) to be specified in a single place (anno-
tations on the diagram); and the ability to have a reusable
chunk of UI logic analogous to a procedure.

3 LESSONS LEARNT

Since the formulation of Harel as a language, several incarna-
tions of it has been implemented. Some fundamental changes
were also introduced to the original language in order to
cater for problems encountered while using these implemen-
tations to build real world web applications for paying cus-
tomers. The latest permutation of the language is called
Reahl.

Upon using Harel in practice, it became apparent that
the problems encountered are not confined to a user inter-
face. Many of these problems cannot be satisfactorily solved
in isolation either: individual solutions impact one another.
Some solutions also span the different architectural layers
from presentation down to persistence.

To solve these problems, changes had to be made to Harel
(now Reahl), and a lot of additional infrastructure had to be
developed that is not directly related to the language itself.

Because solutions to these problems had to be found
quickly, the particular solutions were shaped very much
by the specific client environments the problems presented
themselves in.

The rest of this section briefly introduces some of the more
important problems and the current solutions implemented
in Reahl.

3.1 Dealing with static content

Harel was aimed at dealing with complex interactive web-
sites. Its initial design overlooked the fact that websites are
rarely only complex and dynamic. Websites typically have a
lot of static, book-like content that eventually leads to parts
with more interesting dynamic behaviour.

A web application built with Reahl is a program—
something that has to be tested, versioned, packaged and
distributed in a rigorous fashion.

It is cumbersome to deal with small changes to static con-
tent in this way. Moreover, some clients employ their own
web designers and it was necessary to come up with a way
for these people to be able to add and change static pages
using the tools they are used to and have invested in.

Not all pages are only static—sometimes pages need to
be static with a bit of dynamic content added. The static

pages created by the client web designers needed to be dealt
with as if they were part static and part dynamic.

3.1.1 Allowing for simple structure

Static websites generally have hierarchical structure between
pages.

State diagrams allows one to build hierarchies, since each
composite state in the diagram can contain substates. How-
ever, such a diagram is much more than a hierarchy, because
of the transitions and additional annotations relating to dy-
namic behaviour.

Simple states of State diagrams cannot contain further
substates, and thus are leaves in a hierarchy. And since they
do not have substates they also do not have transitions or
any other of the dynamic features.

In Reahl, simple locations2 were changed to be able to
contain other locations, but without the ability to have tran-
sitions between contained locations.

This addition makes it possible to create simple tree struc-
tures found in other web frameworks—something that was
initially overlooked. Moreover, such simple tree structures
can be merged with parts that have dynamic behaviour,
since a simple location can also contain a composite loca-
tion.

3.1.2 Locations that are not part of source code

The next problem tackled is that of being able to deal with
static parts of a site as data—so that it could be changed
without influencing the source code of the site.

To solve this issue the framework was changed so that
each site would have a “static root”. A static root is merely
a directory containing static files, exactly like the document
root of a web server like Apache. The static root use by a
site is set by configuration.

The framework was changed to behave differently should
an Uniform resource locator (URL) be requested which it
cannot find a location for in site. It will first check whether it
can map the URL to an existing file relative to the static root
of the site. If this is possible, the framework dynamically,
but temporarily, adds a new kind of location for such a static
file to the site itself.

This allows Reahl to serve static files even though they
are not part of the source code.

Web designers use programs such as Adobe Dreamweaver
and Microsoft Frontpage to create static websites. Using
such programs a hierarchy of directories and static files can
be built and uploaded to a directory on a server via a num-
ber different means. With the right configuration on a web
server such as Apache, it is possible to grant a web designer
access to the static root of a Reahl website. This way de-
signers are able to use their own familiar tools to build static
content, and upload it to a Reahl website.

3.1.3 Rendering static pages dynamically

One more piece of the puzzle was missing. The static pages
located in a static root of a Reahl website would be rendered

2In Reahl, “location” is the term analogous to “state” in
a State Diagram.



by sending the static file unchanged back to a web browser.
This is not always what is desired.

For example, it may be necessary to display on any given
page of a site whether the current user is logged in or not.
While static pages can be made to look exactly like other
dynamic pages in the same site, they are static and cannot
change depending on whether a user is logged in or not.

To solve this problem, the framework had to be changed so
that it would not merely render a dynamically added static
location unchanged. Rather, it would render the normal dy-
namic page template used for the site and cherry-pick parts
out of the static page on the file system to be inserted in the
right places on a dynamic page.

While this plan worked well with static Hypertext markup
language (HTML) pages, accompanying static files, such as
pictures still needed to be rendered unchanged. The frame-
work is able to distinguish between these cases by the exten-
sion of the files.

This addition to the framework now allows the web de-
signers of a client to design static pages, upload them to a
Reahl site, but still have them displayed as if they were dy-
namic. Dynamic elements, such as the login status of the
user, or even banner ads continue to work. This last addi-
tion makes a static page look and feel 100% like the rest of
the site.

3.2 Reusable libraries

One CMS feature sorely missed while using the Reahl frame-
work was the ability to pre-build components with domain
functionality that can be re-used in many websites.

Using Reahl happens in the context of a company with
many small clients who have overlapping needs. It makes
sense to build solutions for such needs once, and use the
solution for several clients.

Reahl was designed from the beginning to be able to ship
parts of the website UI as reusable modules. But such mod-
ules only contained UI code. What was needed was a kind
of component that included these screens as well as applica-
tion and database code. In other words, the module needs to
cut across architectural layers all the way from presentation
through to persistence.

All of Reahl is built using the Python programming lan-
guage. An extension is available in Python which makes it
possible to package Python code in something reminiscent of
a Java Jar file. In Python these are called Python Eggs [13].
A Python Egg includes more metadata than a Jar file. The
metadata in a Python Egg allows for functionality akin to
the Open services gateway initiative (OSGI) standards [15]:

• each egg has a name and version;

• one can specify which other (versioned) eggs an egg is
dependent on; and

• eggs can publish interfaces that can be discovered at
run-time and used by other eggs.

This mechanism was adopted by Reahl for packaging a
reusable component. Such an egg would then comprise Reahl
code and Python code (which database logic is written in).
With very little effort it was thus possible to extend Reahl

with an OSGI-like component system that is aware of de-
pendencies between components, and is readily packaged for
distribution on various platforms.

Having such packaged components, however, is not
enough. They, as well as the Reahl framework underneath,
keep changing while in active use on several client websites.
These changes create a lot of scope for error and a lot of
overhead when it is necessary to upgrade an egg that is cur-
rently in use on several sites. Most of the problems here
result from the fact that a new version of a component often
entailed changes to the database schema previously used.
The underlying database schema needs to be migrated as
part of an upgrade. And this needs to happen for each dis-
tinct site—but only for the modules used by that specific
site.

To solve this problem, a bit of infrastructure was built,
based on the functionality provided by Python eggs. A Reahl
website is also packaged as an egg. Each egg component
advertises an interface that can be used by automated tools
for all sorts of database-related tasks, such as migrating the
database schema for that egg, creating an initial schema or
even to run daily maintenance tasks.

From the dependency information stored in each egg, a
dependency tree can be derived. This tree is used by au-
tomated tools to determine which modules form part of a
particular site. The tree also is used to determine the logi-
cal order in which the database migration for different eggs
should be executed.

On the web UI side of things, another small innovation
was needed in order to allow the re-use of modules. Nor-
mally, web frameworks would allow one to have a “master
template” which will be used for any page rendered. The
template for each page typically consists of “including” the
master template, and inserting the page-specific details in
it.

This means that the name of the master template used
is hard-coded in the source code of each page. For a page
that may form part of different websites, each with their
own “master template”, this would not do. In Reahl it is
now possible to create a “master template” which defines a
number of slots. This template is inherited down the hierar-
chy of pages, and any page can use this template regardless
of where it came from, and without having to hard-code its
name. Master templates merely need to be written with the
correct slots, the content for which will be provided by the
actual page.

3.3 Security and access control

In any multiuser system security is a tricky subject. Some-
how one needs to specify who has access to what information
(or object), and exactly what that access entails.

The security requirements of applications vary in sophis-
tication and granularity.

Take the example of an investment company where a user
can invest online. The the company would keep a record
of each customer portfolio, perhaps viewable on a particular
URL with the URL parameters indicating which portfolio
needs to be displayed.

A simple solution is to allow only particular users access
to that specific URL. This, however would mean that any-
one who can see a portfolio can see the portfolio of anyone



else, should they be able to craft the correct URL. This is
probably not a desired feature. In such a case security needs
to be informed by the domain data as well, so that the cur-
rent user can only see his own portfolio. How the domain
model informs the security model can become quite compli-
cated and depends on the domain. There may be advisors
who are able to see the portfolios of other users. But the
system should restrict an advisor to see only the portfolios
of users she had a contract with. It may also be that some
advisors have additional power of attorney to effect changes
in a portfolio—but only certain types of changes.

A complex enough system usually has a mixture of such
access control needs. Deciding what is possible, and how to
implement it is not a trivial problem. Any web application
large enough to matter needs to provide a way to be able to
solve this problem.

In a web application one also needs to be careful of how
you implement access control code. For example: a particu-
lar screen could have a link to “change portfolio”, depending
on the rights of the current user. If the user clicks on “change
portfolio”, she will be presented with a screen where she can
perform all sorts of actions on that portfolio.

To merely remove the link on the first page for users who
should not have access to the portfolio is not an acceptable
solution. An attacker could know the URL and be able to
gain access to the “change portfolio” screen regardless of
whether a link was presented or not. The “change portfolio”
screen itself also needs to prevent access to itself in order to
stop an attacker.

A more subtle version of this problem is also possible.
Security-sensitive code may be written in JavaScript. But
JavaScript is executed on the client browser, and an attacker
could modify a browser to execute the given code in unin-
tended ways, or replace it with his own.

Ideally a programmer would want to specify security and
access control restrictions in a central location.

But the programmer has to take cognisance of the access
that apply in several different places: when rendering the
first screen (to be able to know whether to render a link or
not); when the second screen is requested (to stop a possible
attacker); and when requests relating to these screens are
received by a server.

3.3.1 Access control in Reahl

Currently, Reahl does not have an elegant high-level solu-
tion for such security issues. A module was built containing
the necessary domain model, based on analysis patterns pro-
posed by Martin Fowler in [6]. This domain model allows the
system to keep track of which roles are played by particular
parties.

Access to any domain object from the web takes place via
an interface (this solution follows the Facade pattern, [5]).
This strategy renders the interface a central point where
access control can be enforced.

For the generation of screens, a separate mechanism is
used, called adaptive widgets:

Reahl includes a set of objects that can be rendered as
HTML UI widgets. These are widgets like text fields, or text
input boxes, or selection boxes, etc. Each widget is adorned
upon creation with functions it can call to determine whether
the current user:

• is able to see it at all; or

• is able to change it (which implies the first).

When a page is generated, a widget first calls its functions
in order to determine whether it is visible at all, read-only or
writable for the current user. It is then rendered accordingly.

It is unfortunate that a separate mechanism is needed to
deal with access control in the cases of screen rendering and
executing actions. However, frameworks typically do not
even provide explicit support for this problem to the extent
done in Reahl.

Controlling access at an interface facade is also not ideal.
In an object-oriented world, for example, it is possible to
call one method on an interface, which returns a domain ob-
ject. And once the object has passed through interface, any
method can be called on such object without the protection
afforded by the interface. A good measure of programming
discipline makes this shortcoming passable in practice, but
a better solution is necessary in the long term.

The current solutions in Reahl for these problems are not
elegant, and can be cumbersome and error prone. Both the
screen generation and the interface access control mecha-
nisms could share security specifications that are specified
once—at the relevant domain object. How to accomplish
this elegantly is still an unsolved problem. The problem is
interesting, since it spans concerns related to presentation
and domain model.

Not much effort has been devoted in the Reahl camp to
research the issue, save for the experience the author had
using some other web frameworks.

The idea of adaptive widgets is an idea not seen in other
web frameworks, and they also do not typically have cohesive
ways to deal with other access control issues.

3.4 Validation of form fields

Most web frameworks incorporate some mechanism for vali-
dating user input. This is also something that ideally should
be specified in one central location. When rendering a screen
to be displayed to a user, this information is necessary, for
example, to be able to indicate which fields of a form are
required and which are optional. It may also be desirable
to generate some JavaScript code as part of rendering the
screen so that some fields can be validated as they are being
typed.

Assuming such a form has been rendered, though, the
validation information is needed at another stage of the pro-
cess. When the user enters data and submits the form back
to the server, the submitted input values need to be vali-
dated again. It may be that a malicious user has circum-
vented all other ways of validating the input before this
state. It could also be that previous validation happened in
JavaScript code, but that the user’s browser has JavaScript
turned off.

Most web frameworks allow one to create some kind of
server-side UI element, such as a form, with fields and other
elements on it. On this element you can typically specify
validation rules, and this element is what is used to generate
the initial screen, as well as to parse and validate the values
when the form is submitted.

Reahl employs a similar mechanism. However, experience
has shown that such a scheme allows for a lot of duplication:



A particular domain object may appear on several different
UI forms. A programmer thus needs to duplicate, on each
form, the same specification of how the fields of such an
object are to be validated. Maintaining this duplication is
very cumbersome and error-prone.

Once again, it would be better if a solution can be found
where validation could be specified in one central place: the
relevant element of the domain model.

4 CATERING FOR A RICHER EXPE-
RIENCE

Traditionally, web applications were limited in that it was
not feasable to use much client-side computing power. All
control and processing happened at the server, which would
send pages to the client user agent merely for display. Any
action by the user would result in another round-trip to the
server where the system would react, and send back another
page for display to the client.

The reason for this limitation is that JavaScript imple-
mentations varied to such an extent in different browsers
that it was impractical to generate JavaScript code that
would work on all browsers. The same was true for several
other web standards, such as Cascading style sheets (CSS)
and even how different browsers interpreted HTML.

UIs limited in this way are impoverished compared to
what users are used to in Graphical user interfaces (GUIs).
Users cannot drag and drop; there’s no concept of multiple
windows; UI elements cannot be animated; every significant
user action results in a round-trip to a server—which makes
for a slow user experience; etc.

For such reasons, technologies (standardised and propri-
etary) are currently blossoming that attempt to do more at
the client side of this interaction. Perhaps the most wide-
spread of these is Adobe’s proprietary product called Flash.

Web applications built with these technologies are
sometimes colloquially termed Rich Internet applicationss
(RIAs).

In the last few years, however, browsers have converged
to such an extent that large Internet companies like Google
started leading the way towards using client-side code in
order to provide a better user experience.

One popular method is called Asynchronous JavaScript
and XML (AJAX) [7]. AJAX simply means that JavaScript
is used at the client side to fire off events to the server in the
background, leaving the client browser ready and responsive.
Once the result of such a background request is received
back, the client-side JavaScript code can modify the current
page in-place.

Changing server round-trips to be asynchronous (and con-
current) gives a user the perception that the user interface is
more responsive. Since only parts of a page need to be trans-
ferred in such a round-trip, less time is spent on transferring
pages to the user.

A JavaScript program running in a client browser could
also be used to keep track of the current state of the UI—
freeing the central server which would have had to keep track
of such information for each of its many concurrent clients.
This possibility holds the promise of better scalability.

Using the AJAX technique, however, is problematic from
other perspectives.

JavaScript-rich sites are not always traversable by search
engines, as explained in [10]. And it is important for most
sites that they should be indexed by search engines. Simi-
larly, AJAX taken to the extreme results in a whole site to be
written as if it is one single, changing page from the browser’s
point of view. Not only can it be difficult (to impossible) for
search engines to index such a site, but important browser
capabilities, such as the ability to bookmark a page, or to
use the back button can be thwarted by the AJAX technique
[4]. The various security restrictions in JavaScript makes it
difficult to implement an AJAX site that caters for all these
needs.

AJAX sites are also vulnerable to cross-site-scripting at-
tacks [3].

The asynchronous, concurrent nature of AJAX also result
in complex scenarios that need to be dealt with in the client-
side JavaScript.

AJAX is currently the only viable way to provide a rich
UI on the web which is standards-compliant. But many
companies attempt proprietary RIA technologies. Adobe’s
Flash is the most widespread of these, since its proprietary
rendering engine has a tremendously wide installed base [2].
A proprietary company can control their software easier than
a standards body can control implementations of a standard.
Companies are not hampered by a plethora of incompatible
implementations.

Reahl, Harel, and all research that went into it disregarded
the RIA side of web-based UI. An important step forward
would be to incorporate such techniques into the high-level
approach taken by Reahl. Doing so still warrants a lot of
research: literature exists on user interface patters for the
web [11, 17, 21, 16]. Many different JavaScript libraries have
seen the light, each with its own set of capabilities and UI
elements. A valuable next step would be to survey all of
this literature and libraries, so as to be able to abstract the
essence of what UIs can be built. Another taxonomy of such
approaches might perhaps allow one to see the wood for the
trees in this instance.

With such background one would be able to attempt to
integrate these UI patterns and RIA techniques into the cur-
rent statechart-based model of Reahl. Reahl specifically fo-
cussed on web-based UIs that were not “rich”. Building a
GUI is another matter entirely, since GUIs are much more
complex. However, statecharts have already been employed
for building GUIs as well [9]. It remains for us to investi-
gate such approaches, and to see how these approaches can
be merged with Reahl’s current approach, combined with
methods such as AJAX.

5 CONCLUSION

The initial ideas behind Reahl were initiated several years
ago. In the mean time CMSs have started becoming more
and more flexible. They allow more (albeit still limited)
control over look and feel, and also expose more of their
internals, allowing a programmer to extend the functionality
offered. It is tempting to think that a high-level virtual
machine for building web interfaces would look rather a lot
like a flexible CMS.

In the past few years some web frameworks have also
evolved to provide an explicit way of specifying page flow



[12]. At least one even has a graphical tool with which the
programmer can visualise and edit such a flow [14].

Changes incorporated into Reahl often resulted from pres-
sure on it, as a web framework, to be able to cater for needs
traditionally dealt with using a CMS.

Reahl currently compares well with the converging ap-
proaches taken by web frameworks and CMSs. Reahl’s
method of specifying page flow could be argued to be supe-
riour to those found in other competing frameworks3. Reahl
also is a framework which now includes some functionality
traditionally found in a CMS.

Some solutions in Reahl are still felt by its developers to be
unsatisfactory, but the solutions are on a par with their coun-
terpart solutions by other web framework and CMS competi-
tors.

A lot of the hastily added functionality in Reahl does
not extend its model as elegantly as the author would have
wished for. Furthermore, some CMS-like functionality in
Reahl is primitive compared to the counterparts found in a
CMS where such ideas originated.

The large-scale adoption of AJAX and other RIA ap-
proaches warrant a new look at how such functionality could
be incorporated into Reahl and its statechart based ap-
proach. This opens up the doors to explore an already exist-
ing body of knowledge on using statecharts in more flexible
GUI interfaces—a body of knowledge that previously related
less well to the web due to the limitations of the web at that
time. Many of these limitations can be overcome currently
using AJAX or other approaches to RIA on the web.

From this experience, it would seem that the world of web
development still has a number of difficult problems to solve.
Reahl is ideally positioned to experiment further with such
problems and can cater for the audiences of web framework
users and CMS users.

REFERENCES

[1] Object management group (OMG). Unified Modelling
Language v1.5. OMG, March 2003.

[2] Adobe Systems Inc. Adobe Flash and Shockwave
Players: Adoption Statistics. http://www.adobe.com/

products/player_census/, 2008. (last accessed June
2008).

[3] Brian Dillard. Do try this at home: Ajax bookmarking,
cross-site scripting, and other web 2.0 browser hacks. In
web 2.0 Expo, http://en.oreilly.com/webexsf2008/

public/schedule/detail/1186, April 2008. O’Reilly.

[4] Field Expert. Ajax best practices. http://www.

fieldexpert.com/ajax-best-practices/, 2008. (last
accessed June 2008).

[5] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley, 1997.

[6] M. Fowler. Dealing with roles, 1997.

3The details of this comparison was deemed outside of
the scope of this article, though.

[7] Jesse James Garrett. Ajax: a new approach to web
applications. http://www.adaptivepath.com/ideas/

essays/archives/000385.php, February 2005. (last ac-
cessed June 2008).

[8] David Harel. Statecharts: A visual formalism for com-
plex systems. Sci. Comput. Program., 8(3):231–274,
1987.

[9] Ian Horrocks. Constructing the User Interface with
Statecharts. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[10] Google Inc. A spider’s view of web 2.0.
http://googlewebmastercentral.blogspot.com/

2007/11/spiders-view-of-web-20.html, 2007. (last
accessed June 2008).

[11] Sari A. Laakso. User interface design patterns. http:

//www.cs.helsinki.fi/u/salaakso/patterns/, 2003.
(last accessed June 2008).

[12] Craig McClanahan, Ed Burns, and eds Roger Kitain.
JavaServerTM Faces Specification, v1.1. Sun Microsys-
tems, Inc., February 2004.

[13] Phillip J. Eby. The quick guide to python
eggs. http://peak.telecommunity.com/DevCenter/

PythonEggs, 2007.

[14] Spring Framework. Spring ide 2.0. http://www.

springframework.org/springide/release-20, 2007.
(last accessed June 2008).

[15] The OSGi Alliance. Osgi alliance specifications.
http://www.osgi.org/Specifications/HomePage,
2000-2005.

[16] Jenifer Tidwell. Designing Interfaces: Patterns for Ef-
fective Interaction Design. O’Reilly, 2005.

[17] Anders Toxboe. User interface design pattern library.
http://ui-patterns.com, 2008. (last accessed June
2008).

[18] Iwan Vosloo. A web application user interface specifi-
cation language based on statecharts. Master’s thesis,
University of Pretoria, Pretoria, South Africa, 2005.

[19] Iwan Vosloo and Derrick G. Kourie. Server-centric web
frameworks: An overview. ACM Comput. Surv., 40(2),
2008.

[20] Marco Winckler and Philippe Palanque. StateWe-
bCharts: A formal description technique dedicated to
navigation modelling of web applications. In Interac-
tive Systems. Design, Specification, and Verification:
10th International Workshop, DSV-IS 2003, Funchal,
Madeira Island, Portugal, June 11-13, 2003. Revised
Papers, volume 2844/2003 of Lecture Notes in Com-
puter Science, pages 61–76, GmbH, December 2003.
Springer-Verlag.

[21] Yahoo! Inc. Yahoo! Design Pattern Library. http:

//developer.yahoo.com/ypatterns/, 2005-2008. (last
accessed June 2008).


